Abstract:Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.
Abstract:Bidding optimization is one of the most critical problems in online advertising. Sponsored search (SS) auction, due to the randomness of user query behavior and platform nature, usually adopts keyword-level bidding strategies. In contrast, the display advertising (DA), as a relatively simpler scenario for auction, has taken advantage of real-time bidding (RTB) to boost the performance for advertisers. In this paper, we consider the RTB problem in sponsored search auction, named SS-RTB. SS-RTB has a much more complex dynamic environment, due to stochastic user query behavior and more complex bidding policies based on multiple keywords of an ad. Most previous methods for DA cannot be applied. We propose a reinforcement learning (RL) solution for handling the complex dynamic environment. Although some RL methods have been proposed for online advertising, they all fail to address the "environment changing" problem: the state transition probabilities vary between two days. Motivated by the observation that auction sequences of two days share similar transition patterns at a proper aggregation level, we formulate a robust MDP model at hour-aggregation level of the auction data and propose a control-by-model framework for SS-RTB. Rather than generating bid prices directly, we decide a bidding model for impressions of each hour and perform real-time bidding accordingly. We also extend the method to handle the multi-agent problem. We deployed the SS-RTB system in the e-commerce search auction platform of Alibaba. Empirical experiments of offline evaluation and online A/B test demonstrate the effectiveness of our method.