Abstract:We present an automatic large language model (LLM) conversion approach that produces uncertainty-aware LLMs capable of estimating uncertainty with every prediction. Our approach is model- and data-agnostic, is computationally-efficient, and does not rely on external models or systems. We evaluate converted models on the selective question answering setting -- to answer as many questions as possible while maintaining a given accuracy, forgoing providing predictions when necessary. As part of our results, we test BERT and Llama 2 model variants on the SQuAD extractive QA task and the TruthfulQA generative QA task. We show that using the uncertainty estimates provided by our approach to selectively answer questions leads to significantly higher accuracy over directly using model probabilities.
Abstract:This paper reports on the first international competition on AI for the traveling salesman problem (TSP) at the International Joint Conference on Artificial Intelligence 2021 (IJCAI-21). The TSP is one of the classical combinatorial optimization problems, with many variants inspired by real-world applications. This first competition asked the participants to develop algorithms to solve a time-dependent orienteering problem with stochastic weights and time windows (TD-OPSWTW). It focused on two types of learning approaches: surrogate-based optimization and deep reinforcement learning. In this paper, we describe the problem, the setup of the competition, the winning methods, and give an overview of the results. The winning methods described in this work have advanced the state-of-the-art in using AI for stochastic routing problems. Overall, by organizing this competition we have introduced routing problems as an interesting problem setting for AI researchers. The simulator of the problem has been made open-source and can be used by other researchers as a benchmark for new AI methods.