Abstract:Channel Charting is a dimensionality reduction technique that learns to reconstruct a low-dimensional, physically interpretable map of the radio environment by taking advantage of similarity relationships found in high-dimensional channel state information. One particular family of Channel Charting methods relies on pseudo-distances between measured CSI datapoints, computed using dissimilarity metrics. We suggest several techniques to improve the performance of dissimilarity metric-based Channel Charting. For one, we address an issue related to a discrepancy between Euclidean distances and geodesic distances that occurs when applying dissimilarity metric-based Channel Charting to datasets with nonconvex low-dimensional structure. Furthermore, we incorporate the uncertainty of dissimilarities into the learning process by modeling dissimilarities not as deterministic quantities, but as probability distributions. Our framework facilitates the combination of multiple dissimilarity metrics in a consistent manner. Additionally, latent space dynamics like constrained acceleration due to physical inertia are easily taken into account thanks to changes in the training procedure. We demonstrate the achieved performance improvements for localization applications on a measured channel dataset
Abstract:Distributed massive MIMO is considered a key advancement for improving the performance of next-generation wireless telecommunication systems. However, its efficacy in scenarios involving user mobility is limited due to channel aging. To address this challenge, channel prediction techniques are investigated to forecast future channel state information (CSI) based on previous estimates. We propose a new channel prediction method based on channel charting, a self-supervised learning technique that reconstructs a physically meaningful latent representation of the radio environment using similarity relationships between CSI samples. The concept of inertia within a channel chart allows for predictive radio resource management tasks through the latent space. We demonstrate that channel charting can be used to predict future CSI by exploiting spatial relationships between known estimates that are embedded in the channel chart. Our method is validated on a real-world distributed massive MIMO dataset, and compared to a Wiener predictor and the outdated CSI in terms of achievable sum rate.
Abstract:The use of WiFi signals to sense the physical environment is gaining popularity, with some common applications being motion detection and transmitter localization. Standard-compliant WiFi provides a cost effective, easy and backward-compatible approach to Joint Communication and Sensing and enables a seamless transfer of results from experiments to practical applications. However, most WiFi sensing research is conducted on channel state information (CSI) data from current-generation devices, which are usually not meant for sensing applications and thus lack sufficient spatial diversity or phase synchronization. With ESPARGOS, we previously developed a phase-coherent, real-time capable many-antenna WiFi channel sounder specifically for wireless sensing. We describe how we use ESPARGOS to capture large CSI datasets that we make publicly available. The datasets are extensively documented and labeled, for example with information from reference positioning systems, enabling data-driven and machine learning-based research.
Abstract:Channel Charting is a dimensionality reduction technique that reconstructs a map of the radio environment from similarity relationships found in channel state information. Distances in the channel chart are often computed based on some dissimilarity metric, which can be derived from angular-domain information, channel impulse responses, measured phase differences or simply timestamps. Using such information implicitly makes strong assumptions about the level of phase and time synchronization between base station antennas or assumes approximately constant transmitter velocity. Many practical systems, however, may not provide phase and time synchronization and single-antenna base stations may not even have angular-domain information. We propose a Doppler effect-based loss function for Channel Charting that only requires frequency synchronization between spatially distributed base station antennas, which is a much weaker assumption. We use a dataset measured in an indoor environment to demonstrate that the proposed method is practically feasible with just four base station antennas, that it produces a channel chart that is suitable for localization in the global coordinate frame and that it outperforms other state-of-the-art methods under the given limitations.
Abstract:Wireless channel models are a commonly used tool for the development of wireless telecommunication systems and standards. The currently prevailing geometry-based stochastic channel models (GSCMs) were manually specified for certain environments in a manual process requiring extensive domain knowledge, on the basis of channel measurement campaigns. By taking into account the stochastic distribution of certain channel properties like Rician k-factor, path loss or delay spread, they model the distribution of channel realizations. Instead of this manual process, a generative machine learning model like a generative adversarial network (GAN) may be used to automatically learn the distribution of channel statistics. Subsequently, the GAN's generator may be viewed as a channel model that can replace conventional stochastic or raytracer-based models. We propose a GAN architecture for a massive MIMO channel model, and train it on measurement data produced by a distributed massive MIMO channel sounder.
Abstract:Channel Charting aims to construct a map of the radio environment by leveraging similarity relationships found in high-dimensional channel state information. Although resulting channel charts usually accurately represent local neighborhood relationships, even under conditions with strong multipath propagation, they often fall short in capturing global geometric features. On the other hand, classical model-based localization methods, such as triangulation and multilateration, can easily localize signal sources in the global coordinate frame. However, these methods rely heavily on the assumption of line-of-sight channels and distributed antenna deployments. Based on measured data, we compare classical source localization techniques to channel charts with respect to localization performance. We suggest and evaluate methods to enhance Channel Charting with model-based localization approaches: One approach involves using information derived from classical localization methods to map channel chart locations to physical positions after conventional training of the forward charting function. Foremost, though, we suggest to incorporate information from model-based approaches during the training of the forward charting function in what we call "augmented Channel Charting". We demonstrate that Channel Charting can outperform classical localization methods on the considered dataset.
Abstract:Ray tracing (RT) is instrumental in 6G research in order to generate spatially-consistent and environment-specific channel impulse responses (CIRs). While acquiring accurate scene geometries is now relatively straightforward, determining material characteristics requires precise calibration using channel measurements. We therefore introduce a novel gradient-based calibration method, complemented by differentiable parametrizations of material properties, scattering and antenna patterns. Our method seamlessly integrates with differentiable ray tracers that enable the computation of derivatives of CIRs with respect to these parameters. Essentially, we approach field computation as a large computational graph wherein parameters are trainable akin to weights of a neural network (NN). We have validated our method using both synthetic data and real-world indoor channel measurements, employing a distributed multiple-input multiple-output (MIMO) channel sounder.
Abstract:Channel charting is a self-supervised learning technique whose objective is to reconstruct a map of the radio environment, called channel chart, by taking advantage of similarity relationships in high-dimensional channel state information. We provide an overview of processing steps and evaluation methods for channel charting and propose a novel dissimilarity metric that takes into account angular-domain information as well as a novel deep learning-based metric. Furthermore, we suggest a method to fuse dissimilarity metrics such that both the time at which channels were measured as well as similarities in channel state information can be taken into consideration while learning a channel chart. By applying both classical and deep learning-based manifold learning to a dataset containing sub-6GHz distributed massive MIMO channel measurements, we show that our metrics outperform previously proposed dissimilarity measures. The results indicate that the new metrics improve channel charting performance, even under non-line-of-sight conditions.
Abstract:When operating massive multiple-input multiple-output (MIMO) systems with uplink (UL) and downlink (DL) channels at different frequencies (frequency division duplex (FDD) operation), acquisition of channel state information (CSI) for downlink precoding is a major challenge. Since, barring transceiver impairments, both UL and DL CSI are determined by the physical environment surrounding transmitter and receiver, it stands to reason that, for a static environment, a mapping from UL CSI to DL CSI may exist. First, we propose to use various neural network (NN)-based approaches that learn this mapping and provide baselines using classical signal processing. Second, we introduce a scheme to evaluate the performance and quality of generalization of all approaches, distinguishing between known and previously unseen physical locations. Third, we evaluate all approaches on a real-world indoor dataset collected with a 32-antenna channel sounder.
Abstract:A distributed massive MIMO channel sounder for acquiring large CSI datasets, dubbed DICHASUS, is presented. The measured data has potential applications in the study of various machine learning algorithms for user localization, JCAS, channel charting, enabling massive MIMO in FDD operation, and many others. The proposed channel sounder architecture is distinct from similar previous designs in that each individual single-antenna receiver is completely autonomous, enabling arbitrary, spatially distributed antenna deployments, and offering virtually unlimited scalability in the number of antennas. Optionally, extracted channel coefficient vectors can be tagged with ground truth position data, obtained either through a GNSS receiver (for outdoor operation) or through various indoor positioning techniques.