Abstract:The shift from a linear to a circular economy has the potential to simultaneously reduce uncertainties of material supplies and waste generation. To date, the development of robotic and, more generally, autonomous systems have been rarely integrated into circular economy implementation strategies. In this review, we merge deep-learning vision, compartmental dynamical thermodynamics, and robotic manipulation into a theoretically-coherent physics-based research framework to lay the foundations of circular flow designs of materials, and hence, to speed-up the transition from linearity to circularity. Then, we discuss opportunities for robotics in circular economy.
Abstract:The circular economy paradigm is gaining interest as a solution to reduce both material supply uncertainties and waste generation. One of the main challenges is monitoring materials, since in general, something that is not measured cannot be effectively managed. In this paper, we propose real-time synchronized object detection to enable, at the same time, autonomous sorting, mapping, and quantification of end-of-life medical materials. Dataset, code, and demo videos are publicly available.
Abstract:The dependence on finite reserves of raw materials and the production of waste are two unsolved problems of the traditional linear economy. Healthcare, as a major sector of any nation, is currently facing them. Hence, in this paper, we report theoretical and practical advances of robotic reprocessing of small medical devices. Specifically, on the theory, we combine compartmental dynamical thermodynamics with the mechanics of robots to integrate robotics into a system-level perspective, and then, propose graph-based circularity indicators by leveraging our thermodynamic framework. Our thermodynamic framework is also a step forward in defining the theoretical foundations of circular material flow designs as it improves material flow analysis (MFA) by adding dynamical energy balances to the usual mass balances. On the practice, we report on the on-going design of a flexible robotic cell enabled by deep-learning vision for resources mapping and quantification, disassembly, and waste sorting of small medical devices.
Abstract:The linear take-make-dispose paradigm at the foundations of our traditional economy is proving to be unsustainable due to waste pollution and material supply uncertainties. Hence, increasing the circularity of material flows is necessary. In this paper, we make a step towards circular healthcare by developing several vision systems targeting three main circular economy tasks: resources mapping and quantification, waste sorting, and disassembly. The performance of our systems demonstrates that representation-learning vision can improve the recovery chain, where autonomous systems are key enablers due to the contamination risks. We also published two fully-annotated datasets for image segmentation and for key-point tracking in disassembly operations of inhalers and glucose meters. The datasets and source code are publicly available.
Abstract:While the concept of a digital twin to support maritime operations is gaining attention for predictive maintenance, real-time monitoring, control, and overall process optimization, clarity on its implementation is missing in the literature. Therefore, in this review we show how different authors implemented their digital twins, discuss our findings, and finally give insights on future research directions.
Abstract:Marine debris is a problem both for the health of marine environments and for the human health since tiny pieces of plastic called "microplastics" resulting from the debris decomposition over the time are entering the food chain at any levels. For marine debris detection and removal, autonomous underwater vehicles (AUVs) are a potential solution. In this letter, we focus on the efficiency of AUV vision for real-time and low-light object detection. First, we improved the efficiency of a class of state-of-the-art object detectors, namely EfficientDets, by 1.5% AP on D0, 2.6% AP on D1, 1.2% AP on D2 and 1.3% AP on D3 without increasing the GPU latency. Subsequently, we created and made publicly available a dataset for the detection of in-water plastic bags and bottles and trained our improved EfficientDets on this and another dataset for marine debris detection. Finally, we investigated how the detector performance is affected by low-light conditions and compared two low-light underwater image enhancement strategies both in terms of accuracy and latency. Source code and dataset are publicly available.
Abstract:Dimensionality reduction is a important step in the development of scalable and interpretable data-driven models, especially when there are a large number of candidate variables. This paper focuses on unsupervised variable selection based dimensionality reduction, and in particular on unsupervised greedy selection methods, which have been proposed by various researchers as computationally tractable approximations to optimal subset selection. These methods are largely distinguished from each other by the selection criterion adopted, which include squared correlation, variance explained, mutual information and frame potential. Motivated by the absence in the literature of a systematic comparison of these different methods, we present a critical evaluation of seven unsupervised greedy variable selection algorithms considering both simulated and real world case studies. We also review the theoretical results that provide performance guarantees and enable efficient implementations for certain classes of greedy selection function, related to the concept of submodularity. Furthermore, we introduce and evaluate for the first time, a lazy implementation of the variance explained based forward selection component analysis (FSCA) algorithm. Our experimental results show that: (1) variance explained and mutual information based selection methods yield smaller approximation errors than frame potential; (2) the lazy FSCA implementation has similar performance to FSCA, while being an order of magnitude faster to compute, making it the algorithm of choice for unsupervised variable selection.
Abstract:Long-term availability of minerals and industrial materials is a necessary condition for sustainable development as they are the constituents of any manufacturing product. In particular, technologies with increasing demand such as GPUs and photovoltaic panels are made of critical raw materials. To enhance the efficiency of material management, in this paper we make three main contributions: first, we identify in the literature an emerging computer-vision-enabled material monitoring technology which we call Material Measurement Unit (MMU); second, we provide a survey of works relevant to the development of MMUs; third, we describe a material stock monitoring sensor network deploying multiple MMUs.
Abstract:Reducing dimensionality is a key preprocessing step in many data analysis applications to address the negative effects of the curse of dimensionality and collinearity on model performance and computational complexity, to denoise the data or to reduce storage requirements. Moreover, in many applications it is desirable to reduce the input dimensions by choosing a subset of variables that best represents the entire set without any a priori information available. Unsupervised variable selection techniques provide a solution to this second problem. An autoencoder, if properly regularized, can solve both unsupervised dimensionality reduction and variable selection, but the training of large neural networks can be prohibitive in time sensitive applications. We present an approach called Recovery of Linear Components (RLC), which serves as a middle ground between linear and non-linear dimensionality reduction techniques, reducing autoencoder training times while enhancing performance over purely linear techniques. With the aid of synthetic and real world case studies, we show that the RLC, when compared with an autoencoder of similar complexity, shows higher accuracy, similar robustness to overfitting, and faster training times. Additionally, at the cost of a relatively small increase in computational complexity, RLC is shown to outperform the current state-of-the-art for a semiconductor manufacturing wafer measurement site optimization application.
Abstract:Motivated by the potential for parallel implementation of batch-based algorithms and the accelerated convergence achievable with approximated second order information a limited memory version of the BFGS algorithm has been receiving increasing attention in recent years for large neural network training problems. As the shape of the cost function is generally not quadratic and only becomes approximately quadratic in the vicinity of a minimum, the use of second order information by L-BFGS can be unreliable during the initial phase of training, i.e. when far from a minimum. Therefore, to control the influence of second order information as training progresses, we propose a multi-batch L-BFGS algorithm, namely MB-AM, that gradually increases its trust in the curvature information by implementing a progressive storage and use of curvature data through a development-based increase (dev-increase) scheme. Using six discriminative modelling benchmark problems we show empirically that MB-AM has slightly faster convergence and, on average, achieves better solutions than the standard multi-batch L-BFGS algorithm when training MLP and CNN models.