Abstract:The circular economy paradigm is gaining interest as a solution to reduce both material supply uncertainties and waste generation. One of the main challenges is monitoring materials, since in general, something that is not measured cannot be effectively managed. In this paper, we propose real-time synchronized object detection to enable, at the same time, autonomous sorting, mapping, and quantification of end-of-life medical materials. Dataset, code, and demo videos are publicly available.
Abstract:The dependence on finite reserves of raw materials and the production of waste are two unsolved problems of the traditional linear economy. Healthcare, as a major sector of any nation, is currently facing them. Hence, in this paper, we report theoretical and practical advances of robotic reprocessing of small medical devices. Specifically, on the theory, we combine compartmental dynamical thermodynamics with the mechanics of robots to integrate robotics into a system-level perspective, and then, propose graph-based circularity indicators by leveraging our thermodynamic framework. Our thermodynamic framework is also a step forward in defining the theoretical foundations of circular material flow designs as it improves material flow analysis (MFA) by adding dynamical energy balances to the usual mass balances. On the practice, we report on the on-going design of a flexible robotic cell enabled by deep-learning vision for resources mapping and quantification, disassembly, and waste sorting of small medical devices.
Abstract:The linear take-make-dispose paradigm at the foundations of our traditional economy is proving to be unsustainable due to waste pollution and material supply uncertainties. Hence, increasing the circularity of material flows is necessary. In this paper, we make a step towards circular healthcare by developing several vision systems targeting three main circular economy tasks: resources mapping and quantification, waste sorting, and disassembly. The performance of our systems demonstrates that representation-learning vision can improve the recovery chain, where autonomous systems are key enablers due to the contamination risks. We also published two fully-annotated datasets for image segmentation and for key-point tracking in disassembly operations of inhalers and glucose meters. The datasets and source code are publicly available.