Abstract:Mounting a reconfigurable intelligent surface (RIS) on an unmanned aerial vehicle (UAV) holds promise for improving traditional terrestrial network performance. Unlike conventional methods deploying passive RIS on UAVs, this study delves into the efficacy of an aerial active RIS (AARIS). Specifically, the downlink transmission of an AARIS network is investigated, where the base station (BS) leverages rate-splitting multiple access (RSMA) for effective interference management and benefits from the support of an AARIS for jointly amplifying and reflecting the BS's transmit signals. Considering both the non-trivial energy consumption of the active RIS and the limited energy storage of the UAV, we propose an innovative element selection strategy for optimizing the on/off status of RIS elements, which adaptively and remarkably manages the system's power consumption. To this end, a resource management problem is formulated, aiming to maximize the system energy efficiency (EE) by jointly optimizing the transmit beamforming at the BS, the element activation, the phase shift and the amplification factor at the RIS, the RSMA common data rate at users, as well as the UAV's trajectory. Due to the dynamicity nature of UAV and user mobility, a deep reinforcement learning (DRL) algorithm is designed for resource allocation, utilizing meta-learning to adaptively handle fast time-varying system dynamics. Simulations indicate that incorporating an active RIS at the UAV leads to substantial EE gain, compared to passive RIS-aided UAV. We observe the superiority of the RSMA-based AARIS system in terms of EE, compared to existing approaches adopting non-orthogonal multiple access (NOMA).
Abstract:Optical wireless communication (OWC) systems with multiple light-emitting diodes (LEDs) have recently been explored to support energy-limited devices via simultaneous lightwave information and power transfer (SLIPT). The energy consumption, however, becomes considerable by increasing the number of incorporated LEDs. This paper proposes a joint dimming (JD) scheme that lowers the consumed power of a SLIPT-enabled OWC system by controlling the number of active LEDs. We further enhance the data rate of this system by utilizing rate splitting multiple access (RSMA). More specifically, we formulate a data rate maximization problem to optimize the beamforming design, LED selection and RSMA rate adaptation that guarantees the power budget of the OWC transmitter, as well as the quality-of-service (QoS) and an energy harvesting level for users. We propose a dynamic resource allocation solution based on proximal policy optimization (PPO) reinforcement learning. In simulations, the optimal dimming level is determined to initiate a trade-off between the data rate and power consumption. It is also verified that RSMA significantly improves the data rate.
Abstract:In this paper, we employ active simultaneously transmitting and reflecting reconfigurable intelligent surface (ASRIS) to aid in establishing and enhancing communication within a commensal symbiotic radio (CSR) network. Unlike traditional RIS, ASRIS not only ensures coverage in an omni directional manner but also amplifies received signals, consequently elevating overall network performance. in the first phase, base station (BS) with active massive MIMO antennas, send ambient signal to SBDs. In the first phase, the BS transmits ambient signals to the symbiotic backscatter devices (SBDs), and after harvesting the energy and modulating their information onto the signal carrier, the SBDs send Backscatter signals back to the BS. In this scheme, we employ the Backscatter Relay system to facilitate the transmission of information from the SBDs to the symbiotic User Equipments (SUEs) with the assistance of the BS. In the second phase, the BS transmits information signals to the SUEs after eliminating interference using the Successive Interference Cancellation (SIC) method. ASRIS is employed to establish communication among SUEs lacking a line of sight (LoS) and to amplify power signals for SUEs with a LoS connection to the BS. It is worth noting that we use NOMA for multiple access in all network. The main goal of this paper is to maximize the sum throughput between all users. To achieve this, we formulate an optimization problem with variables including active beamforming coefficients at the BS and ASRIS, as well as the phase adjustments of ASRIS and scheduling parameters between the first and second phases. To model this optimization problem, we employ three deep reinforcement learning (DRL) methods, namely PPO, TD3, and A3C. Finally, the mentioned methods are simulated and compared with each other.
Abstract:In this paper, we present a quality of service (QoS)-aware priority-based spectrum management scheme to guarantee the minimum required bit rate of vertical sector players (VSPs) in the 5G and beyond generation, including the 6th generation (6G). VSPs are considered as spectrum leasers to optimize the overall spectrum efficiency of the network from the perspective of the mobile network operator (MNO) as the spectrum licensee and auctioneer. We exploit a modified Vickrey-Clarke-Groves (VCG) auction mechanism to allocate the spectrum to them where the QoS and the truthfulness of bidders are considered as two important parameters for prioritization of VSPs. The simulation is done with the help of deep deterministic policy gradient (DDPG) as a deep reinforcement learning (DRL)-based algorithm. Simulation results demonstrate that deploying the DDPG algorithm results in significant advantages. In particular, the efficiency of the proposed spectrum management scheme is about %85 compared to the %35 efficiency in traditional auction methods.