Abstract:In this study, we introduce the application of causal disparity analysis to unveil intricate relationships and causal pathways between sensitive attributes and the targeted outcomes within real-world observational data. Our methodology involves employing causal decomposition analysis to quantify and examine the causal interplay between sensitive attributes and outcomes. We also emphasize the significance of integrating heterogeneity assessment in causal disparity analysis to gain deeper insights into the impact of sensitive attributes within specific sub-groups on outcomes. Our two-step investigation focuses on datasets where race serves as the sensitive attribute. The results on two datasets indicate the benefit of leveraging causal analysis and heterogeneity assessment not only for quantifying biases in the data but also for disentangling their influences on outcomes. We demonstrate that the sub-groups identified by our approach to be affected the most by disparities are the ones with the largest ML classification errors. We also show that grouping the data only based on a sensitive attribute is not enough, and through these analyses, we can find sub-groups that are directly affected by disparities. We hope that our findings will encourage the adoption of such methodologies in future ethical AI practices and bias audits, fostering a more equitable and fair technological landscape.
Abstract:Large language models (LLMs), trained on vast datasets, can carry biases that manifest in various forms, from overt discrimination to implicit stereotypes. One facet of bias is performance disparities in LLMs, often harming underprivileged groups, such as racial minorities. A common approach to quantifying bias is to use template-based bias probes, which explicitly state group membership (e.g. White) and evaluate if the outcome of a task, sentiment analysis for instance, is invariant to the change of group membership (e.g. change White race to Black). This approach is widely used in bias quantification. However, in this work, we find evidence of an unexpectedly overlooked consequence of using template-based probes for LLM bias quantification. We find that in doing so, text examples associated with White ethnicities appear to be classified as exhibiting negative sentiment at elevated rates. We hypothesize that the scenario arises artificially through a mismatch between the pre-training text of LLMs and the templates used to measure bias through reporting bias, unstated norms that imply group membership without explicit statement. Our finding highlights the potential misleading impact of varying group membership through explicit mention in bias quantification
Abstract:Monte Carlo Tree Search (MCTS) is an immensely popular search-based framework used for decision making. It is traditionally applied to domains where a perfect simulation model of the environment is available. We study and improve MCTS in the context where the environment model is given but imperfect. We show that the discrepancy between the model and the actual environment can lead to significant performance degradation with standard MCTS. We therefore develop Uncertainty Adapted MCTS (UA-MCTS), a more robust algorithm within the MCTS framework. We estimate the transition uncertainty in the given model, and direct the search towards more certain transitions in the state space. We modify all four MCTS phases to improve the search behavior by considering these estimates. We prove, in the corrupted bandit case, that adding uncertainty information to adapt UCB leads to tighter regret bound than standard UCB. Empirically, we evaluate UA-MCTS and its individual components on the deterministic domains from the MinAtar test suite. Our results demonstrate that UA-MCTS strongly improves MCTS in the presence of model transition errors.