Abstract:We present the design and implementation of WaveFlex, the first smart surface that enhances Private LTE/5G networks operating under the shared-license framework in the Citizens Broadband Radio Service frequency band. WaveFlex works in the presence of frequency diversity: multiple nearby base stations operating on different frequencies, as dictated by a Spectrum Access System coordinator. It also handles time dynamism: due to the dynamic sharing rules of the band, base stations occasionally switch channels, especially when priority users enter the network. Finally, WaveFlex operates independently of the network itself, not requiring access to nor modification of the base station or mobile users, yet it remain compliant with and effective on prevailing cellular protocols. We have designed and fabricated WaveFlex on a custom multi-layer PCB, software defined radio-based network monitor, and supporting control software and hardware. Our experimental evaluation benchmarks an operational Private LTE network running at full line rate. Results demonstrate an 8.50 dB average SNR gain, and an average throughput gain of 4.36 Mbps for a single small cell, and 3.19 Mbps for four small cells, in a realistic indoor office scenario.
Abstract:This technical report presents our 1st place solution for the Waymo Open Sim Agents Challenge (WOSAC) 2023. Our proposed MultiVerse Transformer for Agent simulation (MVTA) effectively leverages transformer-based motion prediction approaches, and is tailored for closed-loop simulation of agents. In order to produce simulations with a high degree of realism, we design novel training and sampling methods, and implement a receding horizon prediction mechanism. In addition, we introduce a variable-length history aggregation method to mitigate the compounding error that can arise during closed-loop autoregressive execution. On the WOSAC, our MVTA and its enhanced version MVTE reach a realism meta-metric of 0.5091 and 0.5168, respectively, outperforming all the other methods on the leaderboard.
Abstract:BACKGROUND: Recent neural language models have taken a significant step forward in producing remarkably controllable, fluent, and grammatical text. Although some recent works have found that AI-generated text is not distinguishable from human-authored writing for crowd-sourcing workers, there still exist errors in AI-generated text which are even subtler and harder to spot. METHOD: In this paper, we investigate the gap between scientific content generated by AI and written by humans. Specifically, we first adopt several publicly available tools or models to investigate the performance for detecting GPT-generated scientific text. Then we utilize features from writing style to analyze the similarities and differences between the two types of content. Furthermore, more complex and deep perspectives, such as consistency, coherence, language redundancy, and factual errors, are also taken into consideration for in-depth analysis. RESULT: The results suggest that while AI has the potential to generate scientific content that is as accurate as human-written content, there is still a gap in terms of depth and overall quality. AI-generated scientific content is more likely to contain errors in language redundancy and factual issues. CONCLUSION: We find that there exists a ``writing style'' gap between AI-generated scientific text and human-written scientific text. Moreover, based on the analysis result, we summarize a series of model-agnostic or distribution-agnostic features, which could be utilized to unknown or novel domain distribution and different generation methods. Future research should focus on not only improving the capabilities of AI models to produce high-quality content but also examining and addressing ethical and security concerns related to the generation and the use of AI-generated content.