Abstract:Foundation models show great promise for generative tasks in many domains. Here we discuss the use of foundation models to generate structured documents related to critical assets. A Failure Mode and Effects Analysis (FMEA) captures the composition of an asset or piece of equipment, the ways it may fail and the consequences thereof. Our system uses large language models to enable fast and expert supervised generation of new FMEA documents. Empirical analysis shows that foundation models can correctly generate over half of an FMEA's key content. Results from polling audiences of reliability professionals show a positive outlook on using generative AI to create these documents for critical assets.
Abstract:Many large-scale applications can be elegantly represented using graph structures. Their scalability, however, is often limited by the domain knowledge required to apply them. To address this problem, we propose a novel Causal Temporal Graph Convolutional Neural Network (CTGCN). Our CTGCN architecture is based on a causal discovery mechanism, and is capable of discovering the underlying causal processes. The major advantages of our approach stem from its ability to overcome computational scalability problems with a divide and conquer technique, and from the greater explainability of predictions made using a causal model. We evaluate the scalability of our CTGCN on two datasets to demonstrate that our method is applicable to large scale problems, and show that the integration of causality into the TGCN architecture improves prediction performance up to 40% over typical TGCN approach. Our results are obtained without requiring additional domain knowledge, making our approach adaptable to various domains, specifically when little contextual knowledge is available.
Abstract:Digital Twins are digital representations of systems in the Internet of Things (IoT) that are often based on AI models that are trained on data from those systems. Semantic models are used increasingly to link these datasets from different stages of the IoT systems life-cycle together and to automatically configure the AI modelling pipelines. This combination of semantic models with AI pipelines running on external datasets raises unique challenges particular if rolled out at scale. Within this paper we will discuss the unique requirements of applying semantic graphs to automate Digital Twins in different practical use cases. We will introduce the benchmark dataset DTBM that reflects these characteristics and look into the scaling challenges of different knowledge graph technologies. Based on these insights we will propose a reference architecture that is in-use in multiple products in IBM and derive lessons learned for scaling knowledge graphs for configuring AI models for Digital Twins.