Abstract:Mobile health (mHealth) technologies empower patients to adopt/maintain healthy behaviors in their daily lives, by providing interventions (e.g. push notifications) tailored to the user's needs. In these settings, without intervention, human decision making may be impaired (e.g. valuing near term pleasure over own long term goals). In this work, we formalize this relationship with a framework in which the user optimizes a (potentially impaired) Markov Decision Process (MDP) and the mHealth agent intervenes on the user's MDP parameters. We show that different types of impairments imply different types of optimal intervention. We also provide analytical and empirical explorations of these differences.
Abstract:This work introduces an approach for automatic hair combing by a lightweight robot. For people living with limited mobility, dexterity, or chronic fatigue, combing hair is often a difficult task that negatively impacts personal routines. We propose a modular system for enabling general robot manipulators to assist with a hair-combing task. The system consists of three main components. The first component is the segmentation module, which segments the location of hair in space. The second component is the path planning module that proposes automatically-generated paths through hair based on user input. The final component creates a trajectory for the robot to execute. We quantitatively evaluate the effectiveness of the paths planned by the system with 48 users and qualitatively evaluate the system with 30 users watching videos of the robot performing a hair-combing task in the physical world. The system is shown to effectively comb different hairstyles.
Abstract:Motivated by the need for efficient and personalized learning in mobile health, we investigate the problem of online kernel selection for Gaussian Process regression in the multi-task setting. We propose a novel generative process on the kernel composition for this purpose. Our method demonstrates that trajectories of kernel evolutions can be transferred between users to improve learning and that the kernels themselves are meaningful for an mHealth prediction goal.