Abstract:Socially assistive robotics (SAR) research has shown great potential for supplementing and augmenting therapy for children with autism spectrum disorders (ASD). However, the vast majority of SAR research has been limited to short-term studies in highly controlled environments. The design and development of a SAR system capable of interacting autonomously {\it in situ} for long periods of time involves many engineering and computing challenges. This paper presents the design of a fully autonomous SAR system for long-term, in-home use with children with ASD. We address design decisions based on robustness and adaptability needs, discuss the development of the robot's character and interactions, and provide insights from the month-long, in-home data collections with children with ASD. This work contributes to a larger research program that is exploring how SAR can be used for enhancing the social and cognitive development of children with ASD.
Abstract:Physical embodiment is a required component for robots that are structurally coupled with their real-world environments. However, most socially interactive robots do not need to physically interact with their environments in order to perform their tasks. When and why should embodied robots be used instead of simpler and cheaper virtual agents? This paper reviews the existing work that explores the role of physical embodiment in socially interactive robots. This class consists of robots that are not only capable of engaging in social interaction with humans, but are using primarily their social capabilities to perform their desired functions. Socially interactive robots provide entertainment, information, and/or assistance; this last category is typically encompassed by socially assistive robotics. In all cases, such robots can achieve their primary functions without performing functional physical work. To comprehensively evaluate the existing body of work on embodiment, we first review work from established related fields including psychology, philosophy, and sociology. We then systematically review 65 studies evaluating aspects of embodiment published from 2003 to 2017 in major peer-reviewed robotics publication venues. We examine relevant aspects of the selected studies, focusing on the embodiments compared, tasks evaluated, social roles of robots, and measurements. We introduce three taxonomies for the types of robot embodiment, robot social roles, and human-robot tasks. These taxonomies are used to deconstruct the design and interaction spaces of socially interactive robots and facilitate analysis and discussion of the reviewed studies. We use this newly-defined methodology to critically discuss existing works, revealing topics within embodiment research for social interaction, assistive robotics, and service robotics.
Abstract:Socially assistive robots (SAR) have shown great potential to augment the social and educational development of children with autism spectrum disorders (ASD). As SAR continues to substantiate itself as an effective enhancement to human intervention, researchers have sought to study its longitudinal impacts in real-world environments, including the home. Computational personalization stands out as a central computational challenge as it is necessary to enable SAR systems to adapt to each child's unique and changing needs. Toward that end, we formalized personalization as a hierarchical human robot learning framework (hHRL) consisting of five controllers (disclosure, promise, instruction, feedback, and inquiry) mediated by a meta-controller that utilized reinforcement learning to personalize instruction challenge levels and robot feedback based on each user's unique learning patterns. We instantiated and evaluated the approach in a study with 17 children with ASD, aged 3 to 7 years old, over month-long interventions in their homes. Our findings demonstrate that the fully autonomous SAR system was able to personalize its instruction and feedback over time to each child's proficiency. As a result, every child participant showed improvements in targeted skills and long-term retention of intervention content. Moreover, all child users were engaged for a majority of the intervention, and their families reported the SAR system to be useful and adaptable. In summary, our results show that autonomous, personalized SAR interventions are both feasible and effective in providing long-term in-home developmental support for children with diverse learning needs.