Abstract:Deep Learning (DL) is rapidly maturing to the point that it can be used in safety- and security-crucial applications. However, adversarial samples, which are undetectable to the human eye, pose a serious threat that can cause the model to misbehave and compromise the performance of such applications. Addressing the robustness of DL models has become crucial to understanding and defending against adversarial attacks. In this study, we perform comprehensive experiments to examine the effect of adversarial attacks and defenses on various model architectures across well-known datasets. Our research focuses on black-box attacks such as SimBA, HopSkipJump, MGAAttack, and boundary attacks, as well as preprocessor-based defensive mechanisms, including bits squeezing, median smoothing, and JPEG filter. Experimenting with various models, our results demonstrate that the level of noise needed for the attack increases as the number of layers increases. Moreover, the attack success rate decreases as the number of layers increases. This indicates that model complexity and robustness have a significant relationship. Investigating the diversity and robustness relationship, our experiments with diverse models show that having a large number of parameters does not imply higher robustness. Our experiments extend to show the effects of the training dataset on model robustness. Using various datasets such as ImageNet-1000, CIFAR-100, and CIFAR-10 are used to evaluate the black-box attacks. Considering the multiple dimensions of our analysis, e.g., model complexity and training dataset, we examined the behavior of black-box attacks when models apply defenses. Our results show that applying defense strategies can significantly reduce attack effectiveness. This research provides in-depth analysis and insight into the robustness of DL models against various attacks, and defenses.
Abstract:Deep learning has been rapidly employed in many applications revolutionizing many industries, but it is known to be vulnerable to adversarial attacks. Such attacks pose a serious threat to deep learning-based systems compromising their integrity, reliability, and trust. Interpretable Deep Learning Systems (IDLSes) are designed to make the system more transparent and explainable, but they are also shown to be susceptible to attacks. In this work, we propose a novel microbial genetic algorithm-based black-box attack against IDLSes that requires no prior knowledge of the target model and its interpretation model. The proposed attack is a query-efficient approach that combines transfer-based and score-based methods, making it a powerful tool to unveil IDLS vulnerabilities. Our experiments of the attack show high attack success rates using adversarial examples with attribution maps that are highly similar to those of benign samples which makes it difficult to detect even by human analysts. Our results highlight the need for improved IDLS security to ensure their practical reliability.
Abstract:Deep learning models are susceptible to adversarial samples in white and black-box environments. Although previous studies have shown high attack success rates, coupling DNN models with interpretation models could offer a sense of security when a human expert is involved, who can identify whether a given sample is benign or malicious. However, in white-box environments, interpretable deep learning systems (IDLSes) have been shown to be vulnerable to malicious manipulations. In black-box settings, as access to the components of IDLSes is limited, it becomes more challenging for the adversary to fool the system. In this work, we propose a Query-efficient Score-based black-box attack against IDLSes, QuScore, which requires no knowledge of the target model and its coupled interpretation model. QuScore is based on transfer-based and score-based methods by employing an effective microbial genetic algorithm. Our method is designed to reduce the number of queries necessary to carry out successful attacks, resulting in a more efficient process. By continuously refining the adversarial samples created based on feedback scores from the IDLS, our approach effectively navigates the search space to identify perturbations that can fool the system. We evaluate the attack's effectiveness on four CNN models (Inception, ResNet, VGG, DenseNet) and two interpretation models (CAM, Grad), using both ImageNet and CIFAR datasets. Our results show that the proposed approach is query-efficient with a high attack success rate that can reach between 95% and 100% and transferability with an average success rate of 69% in the ImageNet and CIFAR datasets. Our attack method generates adversarial examples with attribution maps that resemble benign samples. We have also demonstrated that our attack is resilient against various preprocessing defense techniques and can easily be transferred to different DNN models.
Abstract:Deep learning methods have gained increased attention in various applications due to their outstanding performance. For exploring how this high performance relates to the proper use of data artifacts and the accurate problem formulation of a given task, interpretation models have become a crucial component in developing deep learning-based systems. Interpretation models enable the understanding of the inner workings of deep learning models and offer a sense of security in detecting the misuse of artifacts in the input data. Similar to prediction models, interpretation models are also susceptible to adversarial inputs. This work introduces two attacks, AdvEdge and AdvEdge$^{+}$, that deceive both the target deep learning model and the coupled interpretation model. We assess the effectiveness of proposed attacks against two deep learning model architectures coupled with four interpretation models that represent different categories of interpretation models. Our experiments include the attack implementation using various attack frameworks. We also explore the potential countermeasures against such attacks. Our analysis shows the effectiveness of our attacks in terms of deceiving the deep learning models and their interpreters, and highlights insights to improve and circumvent the attacks.
Abstract:Privacy-preserving distributed machine learning has become more important than ever due to the high demand of large-scale data processing. This paper focuses on a class of machine learning problems that can be formulated as regularized empirical risk minimization, and develops a privacy-preserving approach to such learning problems. We use Alternating Direction Method of Multipliers (ADMM) to decentralize the learning algorithm, and apply Gaussian mechanisms to provide local differential privacy guarantee. However, simply combining ADMM and local randomization mechanisms would result in a nonconvergent algorithm with bad performance even under moderate privacy guarantees. Besides, this approach cannot be applied when the objective functions of the learning problems are non-smooth. To address these concerns, we propose an improved ADMM-based Differentially Private distributed learning algorithm, DP-ADMM, where an approximate augmented Lagrangian function and Gaussian mechanisms with time-varying variance are utilized. We also apply the moment accountant method to bound the total privacy loss. Our theoretical analysis shows that DP-ADMM can be applied to convex learning problems with both smooth and non-smooth objectives, provides differential privacy guarantee, and achieves a convergence rate of $O(1/\sqrt{t})$, where $t$ is the number of iterations. Our evaluations demonstrate that our approach can achieve good convergence and accuracy with strong privacy guarantee.