Abstract:In the field of robotics many different approaches ranging from classical planning over optimal control to reinforcement learning (RL) are developed and borrowed from other fields to achieve reliable control in diverse tasks. In order to get a clear understanding of their individual strengths and weaknesses and their applicability in real world robotic scenarios is it important to benchmark and compare their performances not only in a simulation but also on real hardware. The '2nd AI Olympics with RealAIGym' competition was held at the IROS 2024 conference to contribute to this cause and evaluate different controllers according to their ability to solve a dynamic control problem on an underactuated double pendulum system with chaotic dynamics. This paper describes the four different RL methods submitted by the participating teams, presents their performance in the swing-up task on a real double pendulum, measured against various criteria, and discusses their transferability from simulation to real hardware and their robustness to external disturbances.
Abstract:The ``AI Olympics with RealAIGym'' competition challenges participants to stabilize chaotic underactuated dynamical systems with advanced control algorithms. In this paper, we present a novel solution submitted to IROS'24 competition, which builds upon Soft Actor-Critic (SAC), a popular model-free entropy-regularized Reinforcement Learning (RL) algorithm. We add a `context' vector to the state, which encodes the immediate history via a Convolutional Neural Network (CNN) to counteract the unmodeled effects on the real system. Our method achieves high performance scores and competitive robustness scores on both tracks of the competition: Pendubot and Acrobot.