Otto von Guericke University Magdeburg, Germany
Abstract:Quantitative Artificial Intelligence (AI) Benchmarks have emerged as fundamental tools for evaluating the performance, capability, and safety of AI models and systems. Currently, they shape the direction of AI development and are playing an increasingly prominent role in regulatory frameworks. As their influence grows, however, so too does concerns about how and with what effects they evaluate highly sensitive topics such as capabilities, including high-impact capabilities, safety and systemic risks. This paper presents an interdisciplinary meta-review of about 100 studies that discuss shortcomings in quantitative benchmarking practices, published in the last 10 years. It brings together many fine-grained issues in the design and application of benchmarks (such as biases in dataset creation, inadequate documentation, data contamination, and failures to distinguish signal from noise) with broader sociotechnical issues (such as an over-focus on evaluating text-based AI models according to one-time testing logic that fails to account for how AI models are increasingly multimodal and interact with humans and other technical systems). Our review also highlights a series of systemic flaws in current benchmarking practices, such as misaligned incentives, construct validity issues, unknown unknowns, and problems with the gaming of benchmark results. Furthermore, it underscores how benchmark practices are fundamentally shaped by cultural, commercial and competitive dynamics that often prioritise state-of-the-art performance at the expense of broader societal concerns. By providing an overview of risks associated with existing benchmarking procedures, we problematise disproportionate trust placed in benchmarks and contribute to ongoing efforts to improve the accountability and relevance of quantitative AI benchmarks within the complexities of real-world scenarios.
Abstract:Diffusion-based recommender systems have recently proven to outperform traditional generative recommendation approaches, such as variational autoencoders and generative adversarial networks. Nevertheless, the machine learning literature has raised several concerns regarding the possibility that diffusion models, while learning the distribution of data samples, may inadvertently carry information bias and lead to unfair outcomes. In light of this aspect, and considering the relevance that fairness has held in recommendations over the last few decades, we conduct one of the first fairness investigations in the literature on DiffRec, a pioneer approach in diffusion-based recommendation. First, we propose an experimental setting involving DiffRec (and its variant L-DiffRec) along with nine state-of-the-art recommendation models, two popular recommendation datasets from the fairness-aware literature, and six metrics accounting for accuracy and consumer/provider fairness. Then, we perform a twofold analysis, one assessing models' performance under accuracy and recommendation fairness separately, and the other identifying if and to what extent such metrics can strike a performance trade-off. Experimental results from both studies confirm the initial unfairness warnings but pave the way for how to address them in future research directions.
Abstract:The integration of artificial intelligence (AI) into daily life, particularly through information retrieval and recommender systems, has necessitated advanced user modeling and profiling techniques to deliver personalized experiences. These techniques aim to construct accurate user representations based on the rich amounts of data generated through interactions with these systems. This paper presents a comprehensive survey of the current state, evolution, and future directions of user modeling and profiling research. We provide a historical overview, tracing the development from early stereotype models to the latest deep learning techniques, and propose a novel taxonomy that encompasses all active topics in this research area, including recent trends. Our survey highlights the paradigm shifts towards more sophisticated user profiling methods, emphasizing implicit data collection, multi-behavior modeling, and the integration of graph data structures. We also address the critical need for privacy-preserving techniques and the push towards explainability and fairness in user modeling approaches. By examining the definitions of core terminology, we aim to clarify ambiguities and foster a clearer understanding of the field by proposing two novel encyclopedic definitions of the main terms. Furthermore, we explore the application of user modeling in various domains, such as fake news detection, cybersecurity, and personalized education. This survey serves as a comprehensive resource for researchers and practitioners, offering insights into the evolution of user modeling and profiling and guiding the development of more personalized, ethical, and effective AI systems.