Abstract:Quantitative Artificial Intelligence (AI) Benchmarks have emerged as fundamental tools for evaluating the performance, capability, and safety of AI models and systems. Currently, they shape the direction of AI development and are playing an increasingly prominent role in regulatory frameworks. As their influence grows, however, so too does concerns about how and with what effects they evaluate highly sensitive topics such as capabilities, including high-impact capabilities, safety and systemic risks. This paper presents an interdisciplinary meta-review of about 100 studies that discuss shortcomings in quantitative benchmarking practices, published in the last 10 years. It brings together many fine-grained issues in the design and application of benchmarks (such as biases in dataset creation, inadequate documentation, data contamination, and failures to distinguish signal from noise) with broader sociotechnical issues (such as an over-focus on evaluating text-based AI models according to one-time testing logic that fails to account for how AI models are increasingly multimodal and interact with humans and other technical systems). Our review also highlights a series of systemic flaws in current benchmarking practices, such as misaligned incentives, construct validity issues, unknown unknowns, and problems with the gaming of benchmark results. Furthermore, it underscores how benchmark practices are fundamentally shaped by cultural, commercial and competitive dynamics that often prioritise state-of-the-art performance at the expense of broader societal concerns. By providing an overview of risks associated with existing benchmarking procedures, we problematise disproportionate trust placed in benchmarks and contribute to ongoing efforts to improve the accountability and relevance of quantitative AI benchmarks within the complexities of real-world scenarios.
Abstract:Accurate power forecasting from renewable energy sources (RES) is crucial for integrating additional RES capacity into the power system and realizing sustainability goals. This work emphasizes the importance of integrating decentralized spatio-temporal data into forecasting models. However, decentralized data ownership presents a critical obstacle to the success of such spatio-temporal models, and incentive mechanisms to foster data-sharing need to be considered. The main contributions are a) a comparative analysis of the forecasting models, advocating for efficient and interpretable spline LASSO regression models, and b) a bidding mechanism within the data/analytics market to ensure fair compensation for data providers and enable both buyers and sellers to express their data price requirements. Furthermore, an incentive mechanism for time series forecasting is proposed, effectively incorporating price constraints and preventing redundant feature allocation. Results show significant accuracy improvements and potential monetary gains for data sellers. For wind power data, an average root mean squared error improvement of over 10% was achieved by comparing forecasts generated by the proposal with locally generated ones.