Abstract:In this review, automatic defect inspection algorithms that analyze Electron Microscope (EM) images of Semiconductor Manufacturing (SM) products are identified, categorized, and discussed. This is a topic of critical importance for the SM industry as the continuous shrinking of device patterns has led to increasing defectivity and a greater prevalence of higher-resolution imaging tools such as EM. These aspects among others threaten to increase costs as a result of increased inspection time-to-solution and decreased yield, respectively. Relevant research papers were systematically identified in four popular publication databases in January 2024. A total of 103 papers were selected after screening for novel contributions relating to automatic EM image analysis algorithms for semiconductor defect inspection. These papers were then categorized based on the inspection tasks they addressed, their evaluation metrics, and the type of algorithms used. A notable finding from this categorization is that reference-based defect detection algorithms were the most popular algorithm type until 2020 when deep learning-based inspection algorithms became more popular, especially for defect classification. Furthermore, four broader research questions were discussed to come to the following conclusions: (i) the key components of inspection algorithms are set up, pre-processing, feature extraction, and final prediction; (ii) the maturity of the manufacturing process affects the data availability and required sensitivity of inspection algorithms; (iii) key challenges for these algorithms relate to the desiderata of minimizing time-to-solution which pushes for high imaging throughput, reducing manual input during algorithm setup, and higher processing throughput; and (iv) three promising directions for future work are suggested based on gaps in the reviewed literature that address key remaining limitations.
Abstract:As Moore's Law continues to increase the complexity of electronic systems, Electronic Design Automation (EDA) must advance to meet global demand. An important example of an EDA technology is SKILL, a scripting language used to customize and extend EDA software. Recently, code generation models using the transformer architecture have achieved impressive results in academic settings and have even been used in commercial developer tools to improve developer productivity. To the best of our knowledge, this study is the first to apply transformers to SKILL code autocompletion towards improving the productivity of hardware design engineers. In this study, a novel, data-efficient methodology for generating SKILL code is proposed and experimentally validated. More specifically, we propose a novel methodology for (i) creating a high-quality SKILL dataset with both unlabeled and labeled data, (ii) a training strategy where T5 models pre-trained on general programming language code are fine-tuned on our custom SKILL dataset using unsupervised and supervised learning, and (iii) evaluating synthesized SKILL code. We show that models trained using the proposed methodology outperform baselines in terms of human-judgment score and BLEU score. A major challenge faced was the extremely small amount of available SKILL code data that can be used to train a transformer model to generate SKILL code. Despite our validated improvements, the extremely small dataset available to us was still not enough to train a model that can reliably autocomplete SKILL code. We discuss this and other limitations as well as future work that could address these limitations.
Abstract:As semiconductor patterning dimensions shrink, more advanced Scanning Electron Microscopy (SEM) image-based defect inspection techniques are needed. Recently, many Machine Learning (ML)-based approaches have been proposed for defect localization and have shown impressive results. These methods often rely on feature extraction from a full SEM image and possibly a number of regions of interest. In this study, we propose a deep Reinforcement Learning (RL)-based approach to defect localization which iteratively extracts features from increasingly smaller regions of the input image. We compare the results of 18 agents trained with different feature extractors. We discuss the advantages and disadvantages of different feature extractors as well as the RL-based framework in general for semiconductor defect localization.
Abstract:A growing need exists for efficient and accurate methods for detecting defects in semiconductor materials and devices. These defects can have a detrimental impact on the efficiency of the manufacturing process, because they cause critical failures and wafer-yield limitations. As nodes and patterns get smaller, even high-resolution imaging techniques such as Scanning Electron Microscopy (SEM) produce noisy images due to operating close to sensitivity levels and due to varying physical properties of different underlayers or resist materials. This inherent noise is one of the main challenges for defect inspection. One promising approach is the use of machine learning algorithms, which can be trained to accurately classify and locate defects in semiconductor samples. Recently, convolutional neural networks have proved to be particularly useful in this regard. This systematic review provides a comprehensive overview of the state of automated semiconductor defect inspection on SEM images, including the most recent innovations and developments. 38 publications were selected on this topic, indexed in IEEE Xplore and SPIE databases. For each of these, the application, methodology, dataset, results, limitations and future work were summarized. A comprehensive overview and analysis of their methods is provided. Finally, promising avenues for future work in the field of SEM-based defect inspection are suggested.
Abstract:Continual shrinking of pattern dimensions in the semiconductor domain is making it increasingly difficult to inspect defects due to factors such as the presence of stochastic noise and the dynamic behavior of defect patterns and types. Conventional rule-based methods and non-parametric supervised machine learning algorithms like KNN mostly fail at the requirements of semiconductor defect inspection at these advanced nodes. Deep Learning (DL)-based methods have gained popularity in the semiconductor defect inspection domain because they have been proven robust towards these challenging scenarios. In this research work, we have presented an automated DL-based approach for efficient localization and classification of defects in SEM images. We have proposed SEMI-CenterNet (SEMI-CN), a customized CN architecture trained on SEM images of semiconductor wafer defects. The use of the proposed CN approach allows improved computational efficiency compared to previously studied DL models. SEMI-CN gets trained to output the center, class, size, and offset of a defect instance. This is different from the approach of most object detection models that use anchors for bounding box prediction. Previous methods predict redundant bounding boxes, most of which are discarded in postprocessing. CN mitigates this by only predicting boxes for likely defect center points. We train SEMI-CN on two datasets and benchmark two ResNet backbones for the framework. Initially, ResNet models pretrained on the COCO dataset undergo training using two datasets separately. Primarily, SEMI-CN shows significant improvement in inference time against previous research works. Finally, transfer learning (using weights of custom SEM dataset) is applied from ADI dataset to AEI dataset and vice-versa, which reduces the required training time for both backbones to reach the best mAP against conventional training method.
Abstract:Shrinking pattern dimensions leads to an increased variety of defect types in semiconductor devices. This has spurred innovation in patterning approaches such as Directed self-assembly (DSA) for which no traditional, automatic defect inspection software exists. Machine Learning-based SEM image analysis has become an increasingly popular research topic for defect inspection with supervised ML models often showing the best performance. However, little research has been done on obtaining a dataset with high-quality labels for these supervised models. In this work, we propose a method for obtaining coherent and complete labels for a dataset of hexagonal contact hole DSA patterns while requiring minimal quality control effort from a DSA expert. We show that YOLOv8, a state-of-the-art neural network, achieves defect detection precisions of more than 0.9 mAP on our final dataset which best reflects DSA expert defect labeling expectations. We discuss the strengths and limitations of our proposed labeling approach and suggest directions for future work in data-centric ML-based defect inspection.
Abstract:Innovative Electronic Design Automation (EDA) solutions are important to meet the design requirements for increasingly complex electronic devices. Verilog, a hardware description language, is widely used for the design and verification of digital circuits and is synthesized using specific EDA tools. However, writing code is a repetitive and time-intensive task. This paper proposes, primarily, a novel deep learning framework for training a Verilog autocompletion model and, secondarily, a Verilog dataset of files and snippets obtained from open-source repositories. The framework involves integrating models pretrained on general programming language data and finetuning them on a dataset curated to be similar to a target downstream task. This is validated by comparing different pretrained models trained on different subsets of the proposed Verilog dataset using multiple evaluation metrics. These experiments demonstrate that the proposed framework achieves better BLEU, ROUGE-L, and chrF scores by 9.5%, 6.7%, and 6.9%, respectively, compared to a model trained from scratch.
Abstract:In this study, we applied the PointRend (Point-based Rendering) method to semiconductor defect segmentation. PointRend is an iterative segmentation algorithm inspired by image rendering in computer graphics, a new image segmentation method that can generate high-resolution segmentation masks. It can also be flexibly integrated into common instance segmentation meta-architecture such as Mask-RCNN and semantic meta-architecture such as FCN. We implemented a model, termed as SEMI-PointRend, to generate precise segmentation masks by applying the PointRend neural network module. In this paper, we focus on comparing the defect segmentation predictions of SEMI-PointRend and Mask-RCNN for various defect types (line-collapse, single bridge, thin bridge, multi bridge non-horizontal). We show that SEMI-PointRend can outperforms Mask R-CNN by up to 18.8% in terms of segmentation mean average precision.
Abstract:The field of object detection using Deep Learning (DL) is constantly evolving with many new techniques and models being proposed. YOLOv7 is a state-of-the-art object detector based on the YOLO family of models which have become popular for industrial applications. One such possible application domain can be semiconductor defect inspection. The performance of any machine learning model depends on its hyperparameters. Furthermore, combining predictions of one or more models in different ways can also affect performance. In this research, we experiment with YOLOv7, a recently proposed, state-of-the-art object detector, by training and evaluating models with different hyperparameters to investigate which ones improve performance in terms of detection precision for semiconductor line space pattern defects. The base YOLOv7 model with default hyperparameters and Non Maximum Suppression (NMS) prediction combining outperforms all RetinaNet models from previous work in terms of mean Average Precision (mAP). We find that vertically flipping images randomly during training yields a 3% improvement in the mean AP of all defect classes. Other hyperparameter values improved AP only for certain classes compared to the default model. Combining models that achieve the best AP for different defect classes was found to be an effective ensembling strategy. Combining predictions from ensembles using Weighted Box Fusion (WBF) prediction gave the best performance. The best ensemble with WBF improved on the mAP of the default model by 10%.
Abstract:In this research work, we have demonstrated the application of Mask-RCNN (Regional Convolutional Neural Network), a deep-learning algorithm for computer vision and specifically object detection, to semiconductor defect inspection domain. Stochastic defect detection and classification during semiconductor manufacturing has grown to be a challenging task as we continuously shrink circuit pattern dimensions (e.g., for pitches less than 32 nm). Defect inspection and analysis by state-of-the-art optical and e-beam inspection tools is generally driven by some rule-based techniques, which in turn often causes to misclassification and thereby necessitating human expert intervention. In this work, we have revisited and extended our previous deep learning-based defect classification and detection method towards improved defect instance segmentation in SEM images with precise extent of defect as well as generating a mask for each defect category/instance. This also enables to extract and calibrate each segmented mask and quantify the pixels that make up each mask, which in turn enables us to count each categorical defect instances as well as to calculate the surface area in terms of pixels. We are aiming at detecting and segmenting different types of inter-class stochastic defect patterns such as bridge, break, and line collapse as well as to differentiate accurately between intra-class multi-categorical defect bridge scenarios (as thin/single/multi-line/horizontal/non-horizontal) for aggressive pitches as well as thin resists (High NA applications). Our proposed approach demonstrates its effectiveness both quantitatively and qualitatively.