Abstract:In this research work, we have demonstrated the application of Mask-RCNN (Regional Convolutional Neural Network), a deep-learning algorithm for computer vision and specifically object detection, to semiconductor defect inspection domain. Stochastic defect detection and classification during semiconductor manufacturing has grown to be a challenging task as we continuously shrink circuit pattern dimensions (e.g., for pitches less than 32 nm). Defect inspection and analysis by state-of-the-art optical and e-beam inspection tools is generally driven by some rule-based techniques, which in turn often causes to misclassification and thereby necessitating human expert intervention. In this work, we have revisited and extended our previous deep learning-based defect classification and detection method towards improved defect instance segmentation in SEM images with precise extent of defect as well as generating a mask for each defect category/instance. This also enables to extract and calibrate each segmented mask and quantify the pixels that make up each mask, which in turn enables us to count each categorical defect instances as well as to calculate the surface area in terms of pixels. We are aiming at detecting and segmenting different types of inter-class stochastic defect patterns such as bridge, break, and line collapse as well as to differentiate accurately between intra-class multi-categorical defect bridge scenarios (as thin/single/multi-line/horizontal/non-horizontal) for aggressive pitches as well as thin resists (High NA applications). Our proposed approach demonstrates its effectiveness both quantitatively and qualitatively.
Abstract:This proposes a novel ensemble deep learning-based model to accurately classify, detect and localize different defect categories for aggressive pitches and thin resists (High NA applications).In particular, we train RetinaNet models using different ResNet, VGGNet architectures as backbone and present the comparison between the accuracies of these models and their performance analysis on SEM images with different types of defect patterns such as bridge, break and line collapses. Finally, we propose a preference-based ensemble strategy to combine the output predictions from different models in order to achieve better performance on classification and detection of defects. As CDSEM images inherently contain a significant level of noise, detailed feature information is often shadowed by noise. For certain resist profiles, the challenge is also to differentiate between a microbridge, footing, break, and zones of probable breaks. Therefore, we have applied an unsupervised machine learning model to denoise the SEM images to remove the False-Positive defects and optimize the effect of stochastic noise on structured pixels for better metrology and enhanced defect inspection. We repeated the defect inspection step with the same trained model and performed a comparative analysis for "robustness" and "accuracy" metric with conventional approach for both noisy/denoised image pair. The proposed ensemble method demonstrates improvement of the average precision metric (mAP) of the most difficult defect classes. In this work we have developed a novel robust supervised deep learning training scheme to accurately classify as well as localize different defect types in SEM images with high degree of accuracy. Our proposed approach demonstrates its effectiveness both quantitatively and qualitatively.