Abstract:As Moore's Law continues to increase the complexity of electronic systems, Electronic Design Automation (EDA) must advance to meet global demand. An important example of an EDA technology is SKILL, a scripting language used to customize and extend EDA software. Recently, code generation models using the transformer architecture have achieved impressive results in academic settings and have even been used in commercial developer tools to improve developer productivity. To the best of our knowledge, this study is the first to apply transformers to SKILL code autocompletion towards improving the productivity of hardware design engineers. In this study, a novel, data-efficient methodology for generating SKILL code is proposed and experimentally validated. More specifically, we propose a novel methodology for (i) creating a high-quality SKILL dataset with both unlabeled and labeled data, (ii) a training strategy where T5 models pre-trained on general programming language code are fine-tuned on our custom SKILL dataset using unsupervised and supervised learning, and (iii) evaluating synthesized SKILL code. We show that models trained using the proposed methodology outperform baselines in terms of human-judgment score and BLEU score. A major challenge faced was the extremely small amount of available SKILL code data that can be used to train a transformer model to generate SKILL code. Despite our validated improvements, the extremely small dataset available to us was still not enough to train a model that can reliably autocomplete SKILL code. We discuss this and other limitations as well as future work that could address these limitations.
Abstract:Time Series Motif Discovery (TSMD) refers to the task of identifying patterns that occur multiple times (possibly with minor variations) in a time series. All existing methods for TSMD have one or more of the following limitations: they only look for the two most similar occurrences of a pattern; they only look for patterns of a pre-specified, fixed length; they cannot handle variability along the time axis; and they only handle univariate time series. In this paper, we present a new method, LoCoMotif, that has none of these limitations. The method is motivated by a concrete use case from physiotherapy. We demonstrate the value of the proposed method on this use case. We also introduce a new quantitative evaluation metric for motif discovery, and benchmark data for comparing TSMD methods. LoCoMotif substantially outperforms the existing methods, on top of being more broadly applicable.
Abstract:The field of Explainable AI (XAI) is seeking to shed light on the inner workings of complex AI models and uncover the rationale behind their decisions. One of the models gaining attention are probabilistic circuits (PCs), which are a general and unified framework for tractable probabilistic models that support efficient computation of various probabilistic queries. Probabilistic circuits guarantee inference that is polynomial in the size of the circuit. In this paper, we improve the explainability of probabilistic circuits by computing a comprehensible, readable logical theory that covers the high-density regions generated by a PC. To achieve this, pruning approaches based on generative significance are used in a new method called PUTPUT (Probabilistic circuit Understanding Through Pruning Underlying logical Theories). The method is applied to a real world use case where music playlists are automatically generated and expressed as readable (database) queries. Evaluation shows that this approach can effectively produce a comprehensible logical theory that describes the high-density regions of a PC and outperforms state of the art methods when exploring the performance-comprehensibility trade-off.
Abstract:A growing need exists for efficient and accurate methods for detecting defects in semiconductor materials and devices. These defects can have a detrimental impact on the efficiency of the manufacturing process, because they cause critical failures and wafer-yield limitations. As nodes and patterns get smaller, even high-resolution imaging techniques such as Scanning Electron Microscopy (SEM) produce noisy images due to operating close to sensitivity levels and due to varying physical properties of different underlayers or resist materials. This inherent noise is one of the main challenges for defect inspection. One promising approach is the use of machine learning algorithms, which can be trained to accurately classify and locate defects in semiconductor samples. Recently, convolutional neural networks have proved to be particularly useful in this regard. This systematic review provides a comprehensive overview of the state of automated semiconductor defect inspection on SEM images, including the most recent innovations and developments. 38 publications were selected on this topic, indexed in IEEE Xplore and SPIE databases. For each of these, the application, methodology, dataset, results, limitations and future work were summarized. A comprehensive overview and analysis of their methods is provided. Finally, promising avenues for future work in the field of SEM-based defect inspection are suggested.
Abstract:Most anomaly detection systems try to model normal behavior and assume anomalies deviate from it in diverse manners. However, there may be patterns in the anomalies as well. Ideally, an anomaly detection system can exploit patterns in both normal and anomalous behavior. In this paper, we present AD-MERCS, an unsupervised approach to anomaly detection that explicitly aims at doing both. AD-MERCS identifies multiple subspaces of the instance space within which patterns exist, and identifies conditions (possibly in other subspaces) that characterize instances that deviate from these patterns. Experiments show that this modeling of both normality and abnormality makes the anomaly detector performant on a wide range of types of anomalies. Moreover, by identifying patterns and conditions in (low-dimensional) subspaces, the anomaly detector can provide simple explanations of why something is considered an anomaly. These explanations can be both negative (deviation from some pattern) as positive (meeting some condition that is typical for anomalies).
Abstract:Internet based businesses and products (e.g. e-commerce, music streaming) are becoming more and more sophisticated every day with a lot of focus on improving customer satisfaction. A core way they achieve this is by providing customers with an easy access to their products by structuring them in catalogues using navigation bars and providing recommendations. We refer to these catalogues as product concepts, e.g. product categories on e-commerce websites, public playlists on music streaming platforms. These product concepts typically contain products that are linked with each other through some common features (e.g. a playlist of songs by the same artist). How they are defined in the backend of the system can be different for different products. In this work, we represent product concepts using database queries and tackle two learning problems. First, given sets of products that all belong to the same unknown product concept, we learn a database query that is a representation of this product concept. Second, we learn product concepts and their corresponding queries when the given sets of products are associated with multiple product concepts. To achieve these goals, we propose two approaches that combine the concepts of PU learning with Decision Trees and Clustering. Our experiments demonstrate, via a simulated setup for a music streaming service, that our approach is effective in solving these problems.
Abstract:Tree ensembles are powerful models that are widely used. However, they are susceptible to adversarial examples, which are examples that purposely constructed to elicit a misprediction from the model. This can degrade performance and erode a user's trust in the model. Typically, approaches try to alleviate this problem by verifying how robust a learned ensemble is or robustifying the learning process. We take an alternative approach and attempt to detect adversarial examples in a post-deployment setting. We present a novel method for this task that works by analyzing an unseen example's output configuration, which is the set of predictions made by an ensemble's constituent trees. Our approach works with any additive tree ensemble and does not require training a separate model. We evaluate our approach on three different tree ensemble learners. We empirically show that our method is currently the best adversarial detection method for tree ensembles.
Abstract:Analyzing numerous or long time series is difficult in practice due to the high storage costs and computational requirements. Therefore, techniques have been proposed to generate compact similarity-preserving representations of time series, enabling real-time similarity search on large in-memory data collections. However, the existing techniques are not ideally suited for assessing similarity when sequences are locally out of phase. In this paper, we propose the use of product quantization for efficient similarity-based comparison of time series under time warping. The idea is to first compress the data by partitioning the time series into equal length sub-sequences which are represented by a short code. The distance between two time series can then be efficiently approximated by pre-computed elastic distances between their codes. The partitioning into sub-sequences forces unwanted alignments, which we address with a pre-alignment step using the maximal overlap discrete wavelet transform (MODWT). To demonstrate the efficiency and accuracy of our method, we perform an extensive experimental evaluation on benchmark datasets in nearest neighbors classification and clustering applications. Overall, the proposed solution emerges as a highly efficient (both in terms of memory usage and computation time) replacement for elastic measures in time series applications.
Abstract:Machine learning models always make a prediction, even when it is likely to be inaccurate. This behavior should be avoided in many decision support applications, where mistakes can have severe consequences. Albeit already studied in 1970, machine learning with a reject option recently gained interest. This machine learning subfield enables machine learning models to abstain from making a prediction when likely to make a mistake. This survey aims to provide an overview on machine learning with a reject option. We introduce the conditions leading to two types of rejection, ambiguity and novelty rejection. Moreover, we define the existing architectures for models with a reject option, describe the standard learning strategies to train such models and relate traditional machine learning techniques to rejection. Additionally, we review strategies to evaluate a model's predictive and rejective quality. Finally, we provide examples of relevant application domains and show how machine learning with rejection relates to other machine learning research areas.
Abstract:Bayesian reasoning is a powerful mechanism for probabilistic inference in smart edge-devices. During such inferences, a low-precision arithmetic representation can enable improved energy efficiency. However, its impact on inference accuracy is not yet understood. Furthermore, general-purpose hardware does not natively support low-precision representation. To address this, we propose ProbLP, a framework that automates the analysis and design of low-precision probabilistic inference hardware. It automatically chooses an appropriate energy-efficient representation based on worst-case error-bounds and hardware energy-models. It generates custom hardware for the resulting inference network exploiting parallelism, pipelining and low-precision operation. The framework is validated on several embedded-sensing benchmarks.