Abstract:We present Kaolin, a PyTorch library aiming to accelerate 3D deep learning research. Kaolin provides efficient implementations of differentiable 3D modules for use in deep learning systems. With functionality to load and preprocess several popular 3D datasets, and native functions to manipulate meshes, pointclouds, signed distance functions, and voxel grids, Kaolin mitigates the need to write wasteful boilerplate code. Kaolin packages together several differentiable graphics modules including rendering, lighting, shading, and view warping. Kaolin also supports an array of loss functions and evaluation metrics for seamless evaluation and provides visualization functionality to render the 3D results. Importantly, we curate a comprehensive model zoo comprising many state-of-the-art 3D deep learning architectures, to serve as a starting point for future research endeavours. Kaolin is available as open-source software at https://github.com/NVIDIAGameWorks/kaolin/.
Abstract:We consider the problem of scaling deep generative shape models to high-resolution. Drawing motivation from the canonical view representation of objects, we introduce a novel method for the fast up-sampling of 3D objects in voxel space through networks that perform super-resolution on the six orthographic depth projections. This allows us to generate high-resolution objects with more efficient scaling than methods which work directly in 3D. We decompose the problem of 2D depth super-resolution into silhouette and depth prediction to capture both structure and fine detail. This allows our method to generate sharp edges more easily than an individual network. We evaluate our work on multiple experiments concerning high-resolution 3D objects, and show our system is capable of accurately producing objects at resolutions as large as 512$\mathbf{\times}$512$\mathbf{\times}$512 -- the highest resolution reported for this task, to our knowledge. We achieve state-of-the-art performance on 3D object reconstruction from RGB images on the ShapeNet dataset, and further demonstrate the first effective 3D super-resolution method.
Abstract:This paper describes a new approach for training generative adversarial networks (GAN) to understand the detailed 3D shape of objects. While GANs have been used in this domain previously, they are notoriously hard to train, especially for the complex joint data distribution over 3D objects of many categories and orientations. Our method extends previous work by employing the Wasserstein distance normalized with gradient penalization as a training objective. This enables improved generation from the joint object shape distribution. Our system can also reconstruct 3D shape from 2D images and perform shape completion from occluded 2.5D range scans. We achieve notable quantitative improvements in comparison to existing baselines