Abstract:We propose AGS-GNN, a novel attribute-guided sampling algorithm for Graph Neural Networks (GNNs) that exploits node features and connectivity structure of a graph while simultaneously adapting for both homophily and heterophily in graphs. (In homophilic graphs vertices of the same class are more likely to be connected, and vertices of different classes tend to be linked in heterophilic graphs.) While GNNs have been successfully applied to homophilic graphs, their application to heterophilic graphs remains challenging. The best-performing GNNs for heterophilic graphs do not fit the sampling paradigm, suffer high computational costs, and are not inductive. We employ samplers based on feature-similarity and feature-diversity to select subsets of neighbors for a node, and adaptively capture information from homophilic and heterophilic neighborhoods using dual channels. Currently, AGS-GNN is the only algorithm that we know of that explicitly controls homophily in the sampled subgraph through similar and diverse neighborhood samples. For diverse neighborhood sampling, we employ submodularity, which was not used in this context prior to our work. The sampling distribution is pre-computed and highly parallel, achieving the desired scalability. Using an extensive dataset consisting of 35 small ($\le$ 100K nodes) and large (>100K nodes) homophilic and heterophilic graphs, we demonstrate the superiority of AGS-GNN compare to the current approaches in the literature. AGS-GNN achieves comparable test accuracy to the best-performing heterophilic GNNs, even outperforming methods using the entire graph for node classification. AGS-GNN also converges faster compared to methods that sample neighborhoods randomly, and can be incorporated into existing GNN models that employ node or graph sampling.
Abstract:Adversarial attacks pose significant challenges to deep neural networks (DNNs) such as Transformer models in natural language processing (NLP). This paper introduces a novel defense strategy, called GenFighter, which enhances adversarial robustness by learning and reasoning on the training classification distribution. GenFighter identifies potentially malicious instances deviating from the distribution, transforms them into semantically equivalent instances aligned with the training data, and employs ensemble techniques for a unified and robust response. By conducting extensive experiments, we show that GenFighter outperforms state-of-the-art defenses in accuracy under attack and attack success rate metrics. Additionally, it requires a high number of queries per attack, making the attack more challenging in real scenarios. The ablation study shows that our approach integrates transfer learning, a generative/evolutive procedure, and an ensemble method, providing an effective defense against NLP adversarial attacks.
Abstract:Graph representation learning methods generate numerical vector representations for the nodes in a network, thereby enabling their use in standard machine learning models. These methods aim to preserve relational information, such that nodes that are similar in the graph are found close to one another in the representation space. Similarity can be based largely on one of two notions: connectivity or structural role. In tasks where node structural role is important, connectivity based methods show poor performance. Recent work has begun to focus on scalability of learning methods to massive graphs of millions to billions of nodes and edges. Many unsupervised node representation learning algorithms are incapable of scaling to large graphs, and are unable to generate node representations for unseen nodes. In this work, we propose Inferential SIR-GN, a model which is pre-trained on random graphs, then computes node representations rapidly, including for very large networks. We demonstrate that the model is able to capture node's structural role information, and show excellent performance at node and graph classification tasks, on unseen networks. Additionally, we observe the scalability of Inferential SIR-GN is comparable to the fastest current approaches for massive graphs.
Abstract:Weaknesses in computer systems such as faults, bugs and errors in the architecture, design or implementation of software provide vulnerabilities that can be exploited by attackers to compromise the security of a system. Common Weakness Enumerations (CWE) are a hierarchically designed dictionary of software weaknesses that provide a means to understand software flaws, potential impact of their exploitation, and means to mitigate these flaws. Common Vulnerabilities and Exposures (CVE) are brief low-level descriptions that uniquely identify vulnerabilities in a specific product or protocol. Classifying or mapping of CVEs to CWEs provides a means to understand the impact and mitigate the vulnerabilities. Since manual mapping of CVEs is not a viable option, automated approaches are desirable but challenging. We present a novel Transformer-based learning framework (V2W-BERT) in this paper. By using ideas from natural language processing, link prediction and transfer learning, our method outperforms previous approaches not only for CWE instances with abundant data to train, but also rare CWE classes with little or no data to train. Our approach also shows significant improvements in using historical data to predict links for future instances of CVEs, and therefore, provides a viable approach for practical applications. Using data from MITRE and National Vulnerability Database, we achieve up to 97% prediction accuracy for randomly partitioned data and up to 94% prediction accuracy in temporally partitioned data. We believe that our work will influence the design of better methods and training models, as well as applications to solve increasingly harder problems in cybersecurity.