Abstract:Hybrid Flying-Crawling Quadrotors (HyFCQs) are transformable robots with the ability of terrestrial and aerial hybrid motion. This article presents a motion planning and control framework designed for HyFCQs. A kinodynamic path-searching method with the crawling limitation of HyFCQs is proposed to guarantee the dynamical feasibility of trajectories. Subsequently, a hierarchical motion controller is designed to map the execution of the flight autopilot to both crawling and flying modes. Considering the distinct driving methods for crawling and flying, we introduce a motion state machine for autonomous locomotion regulation. Real-world experiments in diverse scenarios validate the exceptional performance of the proposed approach.