Abstract:Training a neural network model can be a lifelong learning process and is a computationally intensive one. A severe adverse effect that may occur in deep neural network models is that they can suffer from catastrophic forgetting during retraining on new data. To avoid such disruptions in the continuous learning, one appealing property is the additive nature of ensemble models. In this paper, we propose two generic ensemble approaches, gradient boosting and meta-learning, to solve the catastrophic forgetting problem in tuning pre-trained neural network models.
Abstract:Generative Adversarial Networks (GANs), though powerful, is hard to train. Several recent works (brock2016neural,miyato2018spectral) suggest that controlling the spectra of weight matrices in the discriminator can significantly improve the training of GANs. Motivated by their discovery, we propose a new framework for training GANs, which allows more flexible spectrum control (e.g., making the weight matrices of the discriminator have slow singular value decays). Specifically, we propose a new reparameterization approach for the weight matrices of the discriminator in GANs, which allows us to directly manipulate the spectra of the weight matrices through various regularizers and constraints, without intensively computing singular value decompositions. Theoretically, we further show that the spectrum control improves the generalization ability of GANs. Our experiments on CIFAR-10, STL-10, and ImageNet datasets confirm that compared to other methods, our proposed method is capable of generating images with competitive quality by utilizing spectral normalization and encouraging the slow singular value decay.