Abstract:Feature preprocessing, which transforms raw input features into numerical representations, is a crucial step in automated machine learning (AutoML) systems. However, the existing systems often have a very small search space for feature preprocessing with the same preprocessing pipeline applied to all the numerical features. This may result in sub-optimal performance since different datasets often have various feature characteristics, and features within a dataset may also have their own preprocessing preferences. To bridge this gap, we explore personalized preprocessing pipeline search, where the search algorithm is allowed to adopt a different preprocessing pipeline for each feature. This is a challenging task because the search space grows exponentially with more features. To tackle this challenge, we propose ClusterP3S, a novel framework for Personalized Preprocessing Pipeline Search via Clustering. The key idea is to learn feature clusters such that the search space can be significantly reduced by using the same preprocessing pipeline for the features within a cluster. To this end, we propose a hierarchical search strategy to jointly learn the clusters and search for the optimal pipelines, where the upper-level search optimizes the feature clustering to enable better pipelines built upon the clusters, and the lower-level search optimizes the pipeline given a specific cluster assignment. We instantiate this idea with a deep clustering network that is trained with reinforcement learning at the upper level, and random search at the lower level. Experiments on benchmark classification datasets demonstrate the effectiveness of enabling feature-wise preprocessing pipeline search.
Abstract:Autonomous navigation in dynamic environments is a complex but essential task for autonomous robots. Recent deep reinforcement learning approaches show promising results to solve the problem, but it is not solved yet, as they typically assume no robot kinodynamic restrictions, holonomic movement or perfect environment knowledge. Moreover, most algorithms fail in the real world due to the inability to generate real-world training data for the huge variability of possible scenarios. In this work, we present a novel planner, DQN-DOVS, that uses deep reinforcement learning on a descriptive robocentric velocity space model to navigate in highly dynamic environments. It is trained using a smart curriculum learning approach on a simulator that faithfully reproduces the real world, reducing the gap between the reality and simulation. We test the resulting algorithm in scenarios with different number of obstacles and compare it with many state-of-the-art approaches, obtaining a better performance. Finally, we try the algorithm in a ground robot, using the same setup as in the simulation experiments.
Abstract:We present TODS, an automated Time Series Outlier Detection System for research and industrial applications. TODS is a highly modular system that supports easy pipeline construction. The basic building block of TODS is primitive, which is an implementation of a function with hyperparameters. TODS currently supports 70 primitives, including data processing, time series processing, feature analysis, detection algorithms, and a reinforcement module. Users can freely construct a pipeline using these primitives and perform end- to-end outlier detection with the constructed pipeline. TODS provides a Graphical User Interface (GUI), where users can flexibly design a pipeline with drag-and-drop. Moreover, a data-driven searcher is provided to automatically discover the most suitable pipelines given a dataset. TODS is released under Apache 2.0 license at https://github.com/datamllab/tods.