Abstract:Automated feature engineering (AutoFE) is used to automatically create new features from original features to improve predictive performance without needing significant human intervention and expertise. Many algorithms exist for AutoFE, but very few approaches exist for the federated learning (FL) setting where data is gathered across many clients and is not shared between clients or a central server. We introduce AutoFE algorithms for the horizontal, vertical, and hybrid FL settings, which differ in how the data is gathered across clients. To the best of our knowledge, we are the first to develop AutoFE algorithms for the horizontal and hybrid FL cases, and we show that the downstream model performance of federated AutoFE is similar to the case where data is held centrally and AutoFE is performed centrally.
Abstract:In this work, we address a challenge in video inpainting: reconstructing occluded regions in dynamic, real-world scenarios. Motivated by the need for continuous human motion monitoring in healthcare settings, where facial features are frequently obscured, we propose a diffusion-based video-level inpainting model, DiffMVR. Our approach introduces a dynamic dual-guided image prompting system, leveraging adaptive reference frames to guide the inpainting process. This enables the model to capture both fine-grained details and smooth transitions between video frames, offering precise control over inpainting direction and significantly improving restoration accuracy in challenging, dynamic environments. DiffMVR represents a significant advancement in the field of diffusion-based inpainting, with practical implications for real-time applications in various dynamic settings.
Abstract:This paper explores a new black-box, zero-shot language model inversion problem and proposes an innovative framework for prompt reconstruction using only text outputs from a language model. Leveraging a large language model alongside an optimization algorithm, the proposed method effectively recovers prompts with minimal resources. Experimental results on several datasets derived from public sources indicate that the proposed approach achieves high-quality prompt recovery and generates prompts more similar to the originals than current state-of-the-art methods. Additionally, the use-case study demonstrates the method's strong potential for generating high-quality text data.
Abstract:Stochastic simulation models are generative models that mimic complex systems to help with decision-making. The reliability of these models heavily depends on well-calibrated input model parameters. However, in many practical scenarios, only output-level data are available to learn the input model parameters, which is challenging due to the often intractable likelihood of the stochastic simulation model. Moreover, stochastic simulation models are frequently inexact, with discrepancies between the model and the target system. No existing methods can effectively learn and quantify the uncertainties of input parameters using only output-level data. In this paper, we propose to learn differentiable input parameters of stochastic simulation models using output-level data via kernel score minimization with stochastic gradient descent. We quantify the uncertainties of the learned input parameters using a frequentist confidence set procedure based on a new asymptotic normality result that accounts for model inexactness. The proposed method is evaluated on exact and inexact G/G/1 queueing models.
Abstract:Self-training often falls short under distribution shifts due to an increased discrepancy between prediction confidence and actual accuracy. This typically necessitates computationally demanding methods such as neighborhood or ensemble-based label corrections. Drawing inspiration from insights on early learning regularization, we develop a principled method to improve self-training under distribution shifts based on temporal consistency. Specifically, we build an uncertainty-aware temporal ensemble with a simple relative thresholding. Then, this ensemble smooths noisy pseudo labels to promote selective temporal consistency. We show that our temporal ensemble is asymptotically correct and our label smoothing technique can reduce the optimality gap of self-training. Our extensive experiments validate that our approach consistently improves self-training performances by 8% to 16% across diverse distribution shift scenarios without a computational overhead. Besides, our method exhibits attractive properties, such as improved calibration performance and robustness to different hyperparameter choices.
Abstract:The development of sophisticated models for video-to-video synthesis has been facilitated by recent advances in deep reinforcement learning and generative adversarial networks (GANs). In this paper, we propose RL-V2V-GAN, a new deep neural network approach based on reinforcement learning for unsupervised conditional video-to-video synthesis. While preserving the unique style of the source video domain, our approach aims to learn a mapping from a source video domain to a target video domain. We train the model using policy gradient and employ ConvLSTM layers to capture the spatial and temporal information by designing a fine-grained GAN architecture and incorporating spatio-temporal adversarial goals. The adversarial losses aid in content translation while preserving style. Unlike traditional video-to-video synthesis methods requiring paired inputs, our proposed approach is more general because it does not require paired inputs. Thus, when dealing with limited videos in the target domain, i.e., few-shot learning, it is particularly effective. Our experiments show that RL-V2V-GAN can produce temporally coherent video results. These results highlight the potential of our approach for further advances in video-to-video synthesis.
Abstract:Federated Learning (FL) is a collaborative, privacy-preserving machine learning framework that enables multiple participants to train a single global model. However, the recent advent of powerful Large Language Models (LLMs) with tens to hundreds of billions of parameters makes the naive application of traditional FL methods to LLMs impractical due to high computational and communication costs. Furthermore, end users of LLMs often lack access to full architectures and weights of the models, making it impossible for participants to fine-tune these models directly. This paper introduces a novel FL scheme for LLMs, named LanFL, which is purely prompt-based and treats the underlying LLMs as black boxes. We have developed a differentially private synthetic sample generation mechanism to facilitate knowledge sharing among participants, along with a prompt optimization scheme that enables learning from synthetic samples. Our extensive experiments demonstrate that LanFL successfully facilitates learning among participants while preserving the privacy of local datasets across various tasks.
Abstract:Recent work by Woodworth et al. (2020) shows that the optimization dynamics of gradient descent for overparameterized problems can be viewed as low-dimensional dual dynamics induced by a mirror map, explaining the implicit regularization phenomenon from the mirror descent perspective. However, the methodology does not apply to algorithms where update directions deviate from true gradients, such as ADAM. We use the mirror descent framework to study the dynamics of smoothed sign descent with a stability constant $\varepsilon$ for regression problems. We propose a mirror map that establishes equivalence to dual dynamics under some assumptions. By studying dual dynamics, we characterize the convergent solution as an approximate KKT point of minimizing a Bregman divergence style function, and show the benefit of tuning the stability constant $\varepsilon$ to reduce the KKT error.
Abstract:Machine unlearning algorithms aim to efficiently remove data from a model without retraining it from scratch, in order to enforce data privacy, remove corrupted or outdated data, or respect a user's ``right to be forgotten." Certified machine unlearning is a strong theoretical guarantee that quantifies the extent to which data is erased from the model weights. Most prior works in certified unlearning focus on models trained on convex or strongly convex loss functions, which benefit from convenient convergence guarantees and the existence of global minima. For nonconvex objectives, existing algorithms rely on limiting assumptions and expensive computations that hinder practical implementations. In this work, we propose a simple first-order algorithm for unlearning on general nonconvex loss functions which unlearns by ``rewinding" to an earlier step during the learning process and then performs gradient descent on the loss function of the retained data points. Our algorithm is black-box, in that it can be directly applied to models pretrained with vanilla gradient descent with no prior consideration of unlearning. We prove $(\epsilon, \delta)$ certified unlearning and performance guarantees that establish the privacy-utility-complexity tradeoff of our algorithm, with special consideration for nonconvex functions that satisfy the Polyak-Lojasiewicz inequality.
Abstract:Automated feature engineering (AutoFE) is the process of automatically building and selecting new features that help improve downstream predictive performance. While traditional feature engineering requires significant domain expertise and time-consuming iterative testing, AutoFE strives to make feature engineering easy and accessible to all data science practitioners. We introduce a new AutoFE algorithm, IIFE, based on determining which feature pairs synergize well through an information-theoretic perspective called interaction information. We demonstrate the superior performance of IIFE over existing algorithms. We also show how interaction information can be used to improve existing AutoFE algorithms. Finally, we highlight several critical experimental setup issues in the existing AutoFE literature and their effects on performance.