Abstract:In this paper, we explore the question of whether language models (LLMs) can support cost-efficient information extraction from complex tables. We introduce schema-driven information extraction, a new task that uses LLMs to transform tabular data into structured records following a human-authored schema. To assess various LLM's capabilities on this task, we develop a benchmark composed of tables from three diverse domains: machine learning papers, chemistry tables, and webpages. Accompanying the benchmark, we present InstrucTE, a table extraction method based on instruction-tuned LLMs. This method necessitates only a human-constructed extraction schema, and incorporates an error-recovery strategy. Notably, InstrucTE demonstrates competitive performance without task-specific labels, achieving an F1 score ranging from 72.3 to 95.7. Moreover, we validate the feasibility of distilling more compact table extraction models to minimize extraction costs and reduce API reliance. This study paves the way for the future development of instruction-following models for cost-efficient table extraction.
Abstract:In this paper we present SynKB, an open-source, automatically extracted knowledge base of chemical synthesis protocols. Similar to proprietary chemistry databases such as Reaxsys, SynKB allows chemists to retrieve structured knowledge about synthetic procedures. By taking advantage of recent advances in natural language processing for procedural texts, SynKB supports more flexible queries about reaction conditions, and thus has the potential to help chemists search the literature for conditions used in relevant reactions as they design new synthetic routes. Using customized Transformer models to automatically extract information from 6 million synthesis procedures described in U.S. and EU patents, we show that for many queries, SynKB has higher recall than Reaxsys, while maintaining high precision. We plan to make SynKB available as an open-source tool; in contrast, proprietary chemistry databases require costly subscriptions.
Abstract:The CL-SciSumm Shared Task is the first medium-scale shared task on scientific document summarization in the computational linguistics~(CL) domain. In 2019, it comprised three tasks: (1A) identifying relationships between citing documents and the referred document, (1B) classifying the discourse facets, and (2) generating the abstractive summary. The dataset comprised 40 annotated sets of citing and reference papers of the CL-SciSumm 2018 corpus and 1000 more from the SciSummNet dataset. All papers are from the open access research papers in the CL domain. This overview describes the participation and the official results of the CL-SciSumm 2019 Shared Task, organized as a part of the 42nd Annual Conference of the Special Interest Group in Information Retrieval (SIGIR), held in Paris, France in July 2019. We compare the participating systems in terms of two evaluation metrics and discuss the use of ROUGE as an evaluation metric. The annotated dataset used for this shared task and the scripts used for evaluation can be accessed and used by the community at: https://github.com/WING-NUS/scisumm-corpus.