Abstract:Although Chinese calligraphy generation has achieved style transfer, generating calligraphy by specifying the calligrapher, font, and character style remains challenging. To address this, we propose a new Chinese calligraphy generation model 'Moyun' , which replaces the Unet in the Diffusion model with Vision Mamba and introduces the TripleLabel control mechanism to achieve controllable calligraphy generation. The model was tested on our large-scale dataset 'Mobao' of over 1.9 million images, and the results demonstrate that 'Moyun' can effectively control the generation process and produce calligraphy in the specified style. Even for calligraphy the calligrapher has not written, 'Moyun' can generate calligraphy that matches the style of the calligrapher.
Abstract:Although current text-guided music generation technology can cope with simple creative scenarios, achieving fine-grained control over individual text-modality conditions remains challenging as user demands become more intricate. Accordingly, we introduce the TEAcher Adapter (TEAdapter), a compact plugin designed to guide the generation process with diverse control information provided by users. In addition, we explore the controllable generation of extended music by leveraging TEAdapter control groups trained on data of distinct structural functionalities. In general, we consider controls over global, elemental, and structural levels. Experimental results demonstrate that the proposed TEAdapter enables multiple precise controls and ensures high-quality music generation. Our module is also lightweight and transferable to any diffusion model architecture. Available code and demos will be found soon at https://github.com/Ashley1101/TEAdapter.