Abstract:As a telecom provider, our company has a critical mission to maintain telecom services even during power outages. To accomplish the mission, it is essential to maintain the power of the telecom base stations. Here we consider a solution where electric vehicles (EVs) directly supply power to base stations by traveling to their locations. The goal is to find EV routes that minimize both the total travel distance of all EVs and the number of downed base stations. In this paper, we formulate this routing problem as a new variant of the Electric Vehicle Routing Problem (EVRP) and propose a solver that combines a rule-based vehicle selector and a reinforcement learning (RL)-based node selector. The rule of the vehicle selector ensures the exact environmental states when the selected EV starts to move. In addition, the node selection by the RL model enables fast route generation, which is critical in emergencies. We evaluate our solver on both synthetic datasets and real datasets. The results show that our solver outperforms baselines in terms of the objective value and computation time. Moreover, we analyze the generalization and scalability of our solver, demonstrating the capability toward unseen settings and large-scale problems. Check also our project page: https://ntt-dkiku.github.io/rl-evrpeps.
Abstract:The Vehicle Routing Problem (VRP) is a widely studied combinatorial optimization problem and has been applied to various practical problems. While the explainability for VRP is significant for improving the reliability and interactivity in practical VRP applications, it remains unexplored. In this paper, we propose RouteExplainer, a post-hoc explanation framework that explains the influence of each edge in a generated route. Our framework realizes this by rethinking a route as the sequence of actions and extending counterfactual explanations based on the action influence model to VRP. To enhance the explanation, we additionally propose an edge classifier that infers the intentions of each edge, a loss function to train the edge classifier, and explanation-text generation by Large Language Models (LLMs). We quantitatively evaluate our edge classifier on four different VRPs. The results demonstrate its rapid computation while maintaining reasonable accuracy, thereby highlighting its potential for deployment in practical applications. Moreover, on the subject of a tourist route, we qualitatively evaluate explanations generated by our framework. This evaluation not only validates our framework but also shows the synergy between explanation frameworks and LLMs. See https://ntt-dkiku.github.io/xai-vrp for our code, datasets, models, and demo.
Abstract:Lookalike models are based on the assumption that user similarity plays an important role towards product selling and enhancing the existing advertising campaigns from a very large user base. Challenges associated to these models reside on the heterogeneity of the user base and its sparsity. In this work, we propose a novel framework that unifies the customers different behaviors or features such as demographics, buying behaviors on different platforms, customer loyalty behaviors and build a lookalike model to improve customer targeting for Rakuten Group, Inc. Extensive experiments on real e-commerce and travel datasets demonstrate the effectiveness of our proposed lookalike model for user targeting task.
Abstract:Leveraging graphs on recommender systems has gained popularity with the development of graph representation learning (GRL). In particular, knowledge graph embedding (KGE) and graph neural networks (GNNs) are representative GRL approaches, which have achieved the state-of-the-art performance on several recommendation tasks. Furthermore, combination of KGE and GNNs (KG-GNNs) has been explored and found effective in many academic literatures. One of the main characteristics of GNNs is their ability to retain structural properties among neighbors in the resulting dense representation, which is usually coined as smoothing. The smoothing is specially desired in the presence of homophilic graphs, such as the ones we find on recommender systems. In this paper, we propose a new model for recommender systems named Knowledge Query-based Graph Convolution (KQGC). In contrast to exisiting KG-GNNs, KQGC focuses on the smoothing, and leverages a simple linear graph convolution for smoothing KGE. A pre-trained KGE is fed into KQGC, and it is smoothed by aggregating neighbor knowledge queries, which allow entity-embeddings to be aligned on appropriate vector points for smoothing KGE effectively. We apply the proposed KQGC to a recommendation task that aims prospective users for specific products. Extensive experiments on a real E-commerce dataset demonstrate the effectiveness of KQGC.