Abstract:With the proliferation of social media posts in recent years, the need to detect sentiments in multimodal (image-text) content has grown rapidly. Since posts are user-generated, the image and text from the same post can express different or even contradictory sentiments, leading to potential \textbf{sentiment discrepancy}. However, existing works mainly adopt a single-branch fusion structure that primarily captures the consistent sentiment between image and text. The ignorance or implicit modeling of discrepant sentiment results in compromised unimodal encoding and limited performances. In this paper, we propose a semantics Completion and Decomposition (CoDe) network to resolve the above issue. In the semantics completion module, we complement image and text representations with the semantics of the OCR text embedded in the image, helping bridge the sentiment gap. In the semantics decomposition module, we decompose image and text representations with exclusive projection and contrastive learning, thereby explicitly capturing the discrepant sentiment between modalities. Finally, we fuse image and text representations by cross-attention and combine them with the learned discrepant sentiment for final classification. Extensive experiments conducted on four multimodal sentiment datasets demonstrate the superiority of CoDe against SOTA methods.
Abstract:Texts in scene images convey critical information for scene understanding and reasoning. The abilities of reading and reasoning matter for the model in the text-based visual question answering (TextVQA) process. However, current TextVQA models do not center on the text and suffer from several limitations. The model is easily dominated by language biases and optical character recognition (OCR) errors due to the absence of semantic guidance in the answer prediction process. In this paper, we propose a novel Semantics-Centered Network (SC-Net) that consists of an instance-level contrastive semantic prediction module (ICSP) and a semantics-centered transformer module (SCT). Equipped with the two modules, the semantics-centered model can resist the language biases and the accumulated errors from OCR. Extensive experiments on TextVQA and ST-VQA datasets show the effectiveness of our model. SC-Net surpasses previous works with a noticeable margin and is more reasonable for the TextVQA task.