Abstract:For companies developing products or algorithms, it is important to understand the potential effects not only globally, but also on sub-populations of users. In particular, it is important to detect if there are certain groups of users that are impacted differently compared to others with regard to business metrics or for whom a model treats unequally along fairness concerns. In this paper, we introduce a novel hierarchical clustering algorithm to detect heterogeneity among users in given sets of sub-populations with respect to any specified notion of group similarity. We prove statistical guarantees about the output and provide interpretable results. We demonstrate the performance of the algorithm on real data from LinkedIn.
Abstract:Many interesting problems in the Internet industry can be framed as a two-sided marketplace problem. Examples include search applications and recommender systems showing people, jobs, movies, products, restaurants, etc. Incorporating fairness while building such systems is crucial and can have a deep social and economic impact (applications include job recommendations, recruiters searching for candidates, etc.). In this paper, we propose a definition and develop an end-to-end framework for achieving fairness while building such machine learning systems at scale. We extend prior work to develop an optimization framework that can tackle fairness constraints from both the source and destination sides of the marketplace, as well as dynamic aspects of the problem. The framework is flexible enough to adapt to different definitions of fairness and can be implemented in very large-scale settings. We perform simulations to show the efficacy of our approach.