Abstract:Millions of people use platforms such as YouTube, Facebook, Twitter, and other mass media. Due to the accessibility of these platforms, they are often used to establish a narrative, conduct propaganda, and disseminate misinformation. This work proposes an approach that uses state-of-the-art NLP techniques to extract features from video captions (subtitles). To evaluate our approach, we utilize a publicly accessible and labeled dataset for classifying videos as misinformation or not. The motivation behind exploring video captions stems from our analysis of videos metadata. Attributes such as the number of views, likes, dislikes, and comments are ineffective as videos are hard to differentiate using this information. Using caption dataset, the proposed models can classify videos among three classes (Misinformation, Debunking Misinformation, and Neutral) with 0.85 to 0.90 F1-score. To emphasize the relevance of the misinformation class, we re-formulate our classification problem as a two-class classification - Misinformation vs. others (Debunking Misinformation and Neutral). In our experiments, the proposed models can classify videos with 0.92 to 0.95 F1-score and 0.78 to 0.90 AUC ROC.
Abstract:As electronically stored data grow in daily life, obtaining novel and relevant information becomes challenging in text mining. Thus people have sought statistical methods based on term frequency, matrix algebra, or topic modeling for text mining. Popular topic models have centered on one single text collection, which is deficient for comparative text analyses. We consider a setting where one can partition the corpus into subcollections. Each subcollection shares a common set of topics, but there exists relative variation in topic proportions among collections. Including any prior knowledge about the corpus (e.g. organization structure), we propose the compound latent Dirichlet allocation (cLDA) model, improving on previous work, encouraging generalizability, and depending less on user-input parameters. To identify the parameters of interest in cLDA, we study Markov chain Monte Carlo (MCMC) and variational inference approaches extensively, and suggest an efficient MCMC method. We evaluate cLDA qualitatively and quantitatively using both synthetic and real-world corpora. The usability study on some real-world corpora illustrates the superiority of cLDA to explore the underlying topics automatically but also model their connections and variations across multiple collections.