Abstract:Although AlphaZero has achieved superhuman levels in Go, recent research has highlighted its vulnerability in particular situations requiring a more comprehensive understanding of the entire board. To address this challenge, this paper introduces ResTNet, a network that interleaves residual networks and Transformer. Our empirical experiments demonstrate several advantages of using ResTNet. First, it not only improves playing strength but also enhances the ability of global information. Second, it defends against an adversary Go program, called cyclic-adversary, tailor-made for attacking AlphaZero algorithms, significantly reducing the average probability of being attacked rate from 70.44% to 23.91%. Third, it improves the accuracy from 59.15% to 80.01% in correctly recognizing ladder patterns, which are one of the challenging patterns for Go AIs. Finally, ResTNet offers a potential explanation of the decision-making process and can also be applied to other games like Hex. To the best of our knowledge, ResTNet is the first to integrate residual networks and Transformer in the context of AlphaZero for board games, suggesting a promising direction for enhancing AlphaZero's global understanding.
Abstract:Game solving is a similar, yet more difficult task than mastering a game. Solving a game typically means to find the game-theoretic value (outcome given optimal play), and optionally a full strategy to follow in order to achieve that outcome. The AlphaZero algorithm has demonstrated super-human level play, and its powerful policy and value predictions have also served as heuristics in game solving. However, to solve a game and obtain a full strategy, a winning response must be found for all possible moves by the losing player. This includes very poor lines of play from the losing side, for which the AlphaZero self-play process will not encounter. AlphaZero-based heuristics can be highly inaccurate when evaluating these out-of-distribution positions, which occur throughout the entire search. To address this issue, this paper investigates applying online fine-tuning while searching and proposes two methods to learn tailor-designed heuristics for game solving. Our experiments show that using online fine-tuning can solve a series of challenging 7x7 Killall-Go problems, using only 23.54% of computation time compared to the baseline without online fine-tuning. Results suggest that the savings scale with problem size. Our method can further be extended to any tree search algorithm for problem solving. Our code is available at https://rlg.iis.sinica.edu.tw/papers/neurips2023-online-fine-tuning-solver.
Abstract:This paper presents MiniZero, a zero-knowledge learning framework that supports four state-of-the-art algorithms, including AlphaZero, MuZero, Gumbel AlphaZero, and Gumbel MuZero. While these algorithms have demonstrated super-human performance in many games, it remains unclear which among them is most suitable or efficient for specific tasks. Through MiniZero, we systematically evaluate the performance of each algorithm in two board games, 9x9 Go and 8x8 Othello, as well as 57 Atari games. Our empirical findings are summarized as follows. For two board games, using more simulations generally results in higher performance. However, the choice of AlphaZero and MuZero may differ based on game properties. For Atari games, both MuZero and Gumbel MuZero are worth considering. Since each game has unique characteristics, different algorithms and simulations yield varying results. In addition, we introduce an approach, called progressive simulation, which progressively increases the simulation budget during training to allocate computation more efficiently. Our empirical results demonstrate that progressive simulation achieves significantly superior performance in two board games. By making our framework and trained models publicly available, this paper contributes a benchmark for future research on zero-knowledge learning algorithms, assisting researchers in algorithm selection and comparison against these zero-knowledge learning baselines.
Abstract:This paper describes a Relevance-Zone pattern table (RZT) that can be used to replace a traditional transposition table. An RZT stores exact game values for patterns that are discovered during a Relevance-Zone-Based Search (RZS), which is the current state-of-the-art in solving L&D problems in Go. Positions that share the same pattern can reuse the same exact game value in the RZT. The pattern matching scheme for RZTs is implemented using a radix tree, taking into consideration patterns with different shapes. To improve the efficiency of table lookups, we designed a heuristic that prevents redundant lookups. The heuristic can safely skip previously queried patterns for a given position, reducing the overhead to 10% of the original cost. We also analyze the time complexity of the RZT both theoretically and empirically. Experiments show the overhead of traversing the radix tree in practice during lookup remain flat logarithmically in relation to the number of entries stored in the table. Experiments also show that the use of an RZT instead of a traditional transposition table significantly reduces the number of searched nodes on two data sets of 7x7 and 19x19 L&D Go problems.
Abstract:Goal-achieving problems are puzzles that set up a specific situation with a clear objective. An example that is well-studied is the category of life-and-death (L&D) problems for Go, which helps players hone their skill of identifying region safety. Many previous methods like lambda search try null moves first, then derive so-called relevance zones (RZs), outside of which the opponent does not need to search. This paper first proposes a novel RZ-based approach, called the RZ-Based Search (RZS), to solving L&D problems for Go. RZS tries moves before determining whether they are null moves post-hoc. This means we do not need to rely on null move heuristics, resulting in a more elegant algorithm, so that it can also be seamlessly incorporated into AlphaZero's super-human level play in our solver. To repurpose AlphaZero for solving, we also propose a new training method called Faster to Life (FTL), which modifies AlphaZero to entice it to win more quickly. We use RZS and FTL to solve L&D problems on Go, namely solving 68 among 106 problems from a professional L&D book while a previous program solves 11 only. Finally, we discuss that the approach is generic in the sense that RZS is applicable to solving many other goal-achieving problems for board games.