Abstract:In this work, we explore different approaches to combine modalities for the problem of automated age-suitability rating of movie trailers. First, we introduce a new dataset containing videos of movie trailers in English downloaded from IMDB and YouTube, along with their corresponding age-suitability rating labels. Secondly, we propose a multi-modal deep learning pipeline addressing the movie trailer age suitability rating problem. This is the first attempt to combine video, audio, and speech information for this problem, and our experimental results show that multi-modal approaches significantly outperform the best mono and bimodal models in this task.
Abstract:This white paper presents a summary of the discussions regarding critical considerations to develop an extensive repository of online videos annotated with labels indicating questionable content. The main discussion points include: 1) the type of appropriate labels that will result in a valuable repository for the larger AI community; 2) how to design the collection and annotation process, as well as the distribution of the corpus to maximize its potential impact; and, 3) what actions we can take to reduce risk of trauma to annotators.