Abstract:Vector Quantization (VQ) has emerged as a prominent weight compression technique, showcasing substantially lower quantization errors than uniform quantization across diverse models, particularly in extreme compression scenarios. However, its efficacy during fine-tuning is limited by the constraint of the compression format, where weight vectors assigned to the same codeword are restricted to updates in the same direction. Consequently, many quantized weights are compelled to move in directions contrary to their local gradient information. To mitigate this issue, we introduce a novel VQ paradigm, Sign-Splitting VQ (SSVQ), which decouples the sign bit of weights from the codebook. Our approach involves extracting the sign bits of uncompressed weights and performing clustering and compression on all-positive weights. We then introduce latent variables for the sign bit and jointly optimize both the signs and the codebook. Additionally, we implement a progressive freezing strategy for the learnable sign to ensure training stability. Extensive experiments on various modern models and tasks demonstrate that SSVQ achieves a significantly superior compression-accuracy trade-off compared to conventional VQ. Furthermore, we validate our algorithm on a hardware accelerator, showing that SSVQ achieves a 3$\times$ speedup over the 8-bit compressed model by reducing memory access.
Abstract:The current neuron reconstruction pipeline for electron microscopy (EM) data usually includes automatic image segmentation followed by extensive human expert proofreading. In this work, we aim to reduce human workload by predicting connectivity between over-segmented neuron pieces, taking both microscopy image and 3D morphology features into account, similar to human proofreading workflow. To this end, we first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain, which is three orders of magnitude larger than existing datasets for neuron segment connection. To learn sophisticated biological imaging features from the connectivity annotations, we propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding. The learned embeddings can be easily incorporated with any point or voxel-based morphological representations for automatic neuron tracing. Extensive comparisons of different combination schemes of image and morphological representation in identifying split errors across the whole fly brain demonstrate the superiority of the proposed approach, especially for the locations that contain severe imaging artifacts, such as section missing and misalignment. The dataset and code are available at https://github.com/Levishery/Flywire-Neuron-Tracing.