Abstract:3D Gaussian Splatting algorithms excel in novel view rendering applications and have been adapted to extend the capabilities of traditional SLAM systems. However, current Gaussian Splatting SLAM methods, designed mainly for hand-held RGB or RGB-D sensors, struggle with tracking drifts when used with rotating RGB-D camera setups. In this paper, we propose a robust Gaussian Splatting SLAM architecture that utilizes inputs from rotating multiple RGB-D cameras to achieve accurate localization and photorealistic rendering performance. The carefully designed Gaussian Splatting Loop Closure module effectively addresses the issue of accumulated tracking and mapping errors found in conventional Gaussian Splatting SLAM systems. First, each Gaussian is associated with an anchor frame and categorized as historical or novel based on its timestamp. By rendering different types of Gaussians at the same viewpoint, the proposed loop detection strategy considers both co-visibility relationships and distinct rendering outcomes. Furthermore, a loop closure optimization approach is proposed to remove camera pose drift and maintain the high quality of 3D Gaussian models. The approach uses a lightweight pose graph optimization algorithm to correct pose drift and updates Gaussians based on the optimized poses. Additionally, a bundle adjustment scheme further refines camera poses using photometric and geometric constraints, ultimately enhancing the global consistency of scenarios. Quantitative and qualitative evaluations on both synthetic and real-world datasets demonstrate that our method outperforms state-of-the-art methods in camera pose estimation and novel view rendering tasks. The code will be open-sourced for the community.
Abstract:Video compression artifacts arise due to the quantization operation in the frequency domain. The goal of video quality enhancement is to reduce compression artifacts and reconstruct a visually-pleasant result. In this work, we propose a hierarchical frequency-based upsampling and refining neural network (HFUR) for compressed video quality enhancement. HFUR consists of two modules: implicit frequency upsampling module (ImpFreqUp) and hierarchical and iterative refinement module (HIR). ImpFreqUp exploits DCT-domain prior derived through implicit DCT transform, and accurately reconstructs the DCT-domain loss via a coarse-to-fine transfer. Consequently, HIR is introduced to facilitate cross-collaboration and information compensation between the scales, thus further refine the feature maps and promote the visual quality of the final output. We demonstrate the effectiveness of the proposed modules via ablation experiments and visualized results. Extensive experiments on public benchmarks show that HFUR achieves state-of-the-art performance for both constant bit rate and constant QP modes.