Abstract:Misinformation spreads rapidly on social media, confusing the truth and targetting potentially vulnerable people. To effectively mitigate the negative impact of misinformation, it must first be accurately detected before applying a mitigation strategy, such as X's community notes, which is currently a manual process. This study takes a knowledge-based approach to misinformation detection, modelling the problem similarly to one of natural language inference. The EffiARA annotation framework is introduced, aiming to utilise inter- and intra-annotator agreement to understand the reliability of each annotator and influence the training of large language models for classification based on annotator reliability. In assessing the EffiARA annotation framework, the Russo-Ukrainian Conflict Knowledge-Based Misinformation Classification Dataset (RUC-MCD) was developed and made publicly available. This study finds that sample weighting using annotator reliability performs the best, utilising both inter- and intra-annotator agreement and soft-label training. The highest classification performance achieved using Llama-3.2-1B was a macro-F1 of 0.757 and 0.740 using TwHIN-BERT-large.
Abstract:Vaccine hesitancy has been a common concern, probably since vaccines were created and, with the popularisation of social media, people started to express their concerns about vaccines online alongside those posting pro- and anti-vaccine content. Predictably, since the first mentions of a COVID-19 vaccine, social media users posted about their fears and concerns or about their support and belief into the effectiveness of these rapidly developing vaccines. Identifying and understanding the reasons behind public hesitancy towards COVID-19 vaccines is important for policy markers that need to develop actions to better inform the population with the aim of increasing vaccine take-up. In the case of COVID-19, where the fast development of the vaccines was mirrored closely by growth in anti-vaxx disinformation, automatic means of detecting citizen attitudes towards vaccination became necessary. This is an important computational social sciences task that requires data analysis in order to gain in-depth understanding of the phenomena at hand. Annotated data is also necessary for training data-driven models for more nuanced analysis of attitudes towards vaccination. To this end, we created a new collection of over 3,101 tweets annotated with users' attitudes towards COVID-19 vaccination (stance). Besides, we also develop a domain-specific language model (VaxxBERT) that achieves the best predictive performance (73.0 accuracy and 69.3 F1-score) as compared to a robust set of baselines. To the best of our knowledge, these are the first dataset and model that model vaccine hesitancy as a category distinct from pro- and anti-vaccine stance.