Abstract:In this paper, we investigate the potential of reconfigurable intelligent surfaces (RISs) in facilitating passive/device-free three-dimensional (3D) drone localization within existing cellular infrastructure operating at millimeter-wave (mmWave) frequencies and employing multiple antennas at the transceivers. The developed localization system operates in the bi-static mode without requiring direct communication between the drone and the base station. We analyze the theoretical performance limits via Fisher information analysis and Cram\'er Rao lower bounds (CRLBs). Furthermore, we develop a low-complexity yet effective drone localization algorithm based on coordinate gradient descent and examine the impact of factors such as radar cross section (RCS) of the drone and training overhead on system performance. It is demonstrated that integrating RIS yields significant benefits over its RIS-free counterpart, as evidenced by both theoretical analyses and numerical simulations.
Abstract:This paper addresses the sensing space identification of arbitrarily shaped continuous antennas. In the context of holographic multiple-input multiple-output (MIMO), a.k.a. large intelligent surfaces, these antennas offer benefits such as super-directivity and near-field operability. The sensing space reveals two key aspects: (a) its dimension specifies the maximally achievable spatial degrees of freedom (DoFs), and (b) the finite basis spanning this space accurately describes the sampled field. Earlier studies focus on specific geometries, bringing forth the need for extendable analysis to real-world conformal antennas. Thus, we introduce a universal framework to determine the antenna sensing space, regardless of its shape. The findings underscore both spatial and spectral concentration of sampled fields to define a generic eigenvalue problem of Slepian concentration. Results show that this approach precisely estimates the DoFs of well-known geometries, and verify its flexible extension to conformal antennas.
Abstract:Holographic multiple-input multiple-output (MIMO) is deemed as a promising technique beyond massive MIMO, unleashing near-field communications, localization, and sensing in the next-generation wireless networks. Semi-continuous surface with densely packed elements brings new opportunities for increased spatial degrees of freedom (DoFs) and spectrum efficiency (SE) even in the line-of-sight (LoS) condition. In this paper, we analyze holographic MIMO performance with disk-shaped large intelligent surfaces (LISs) according to different precoding designs. Beyond the well-known technique of orbital angular momentum (OAM) of radio waves, we propose a new design based on polar Walsh functions. Furthermore, we characterize the performance gap between the proposed scheme and the optimal case with singular value decomposition (SVD) alongside perfect channel state information (CSI) as well as other benchmark schemes in terms of channel capacity. It is verified that the proposed scheme marginally underperforms the OAM-based approach, while offering potential perspectives for reducing implementation complexity and expenditure.
Abstract:In this paper, we introduce the concept of partially-connected Receiving Reconfigurable Intelligent Surfaces (R-RISs), which refers to metasurfaces designed to efficiently sense electromagnetic waveforms impinging on them, and perform localization of the users emitting them. The presented R-RIS hardware architecture comprises subarrays of meta-atoms, with each of them incorporating a waveguide assigned to direct the waveforms reaching its meta-atoms to a reception Radio-Frequency (RF) chain, enabling signal/channel parameter estimation. We particularly focus on the scenarios where the user is located in the far-field of all the R-RIS subarrays, and present a three-Dimensional (3D) localization method which is based on narrowband signaling and Angle of Arrival (AoA) estimates of the impinging signals at each single-receive-RF R-RIS subarray. For the AoA estimation, which relies on spatially sampled versions of the received signals via each subarray's phase configuration of meta-atoms, we devise an off-grid atomic norm minimization approach, which is followed by subspace-based root MUltiple SIgnal Classification (MUSIC). The AoA estimates are finally combined via a least-squared line intersection method to obtain the position coordinates of a user emitting synchronized localization pilots. Our derived theoretical Cram\'er Rao Lower Bounds (CRLBs) on the estimation parameters, which are compared with extensive computer simulation results of our localization approach, verify the effectiveness of the proposed R-RIS-empowered 3D localization system, which is showcased to offer cm-level positioning accuracy. Our comprehensive performance evaluations also demonstrate the impact of various system parameters on the localization performance, namely the training overhead and the distance between the R-RIS and the user, as well as the spacing among the R-RIS's subarrays and its partitioning patterns.