This paper addresses the sensing space identification of arbitrarily shaped continuous antennas. In the context of holographic multiple-input multiple-output (MIMO), a.k.a. large intelligent surfaces, these antennas offer benefits such as super-directivity and near-field operability. The sensing space reveals two key aspects: (a) its dimension specifies the maximally achievable spatial degrees of freedom (DoFs), and (b) the finite basis spanning this space accurately describes the sampled field. Earlier studies focus on specific geometries, bringing forth the need for extendable analysis to real-world conformal antennas. Thus, we introduce a universal framework to determine the antenna sensing space, regardless of its shape. The findings underscore both spatial and spectral concentration of sampled fields to define a generic eigenvalue problem of Slepian concentration. Results show that this approach precisely estimates the DoFs of well-known geometries, and verify its flexible extension to conformal antennas.