Abstract:Among the flourishing research of weakly supervised learning (WSL), we recognize the lack of a unified interpretation of the mechanism behind the weakly supervised scenarios, let alone a systematic treatment of the risk rewrite problem, a crucial step in the empirical risk minimization approach. In this paper, we introduce a framework providing a comprehensive understanding and a unified methodology for WSL. The formulation component of the framework, leveraging a contamination perspective, provides a unified interpretation of how weak supervision is formed and subsumes fifteen existing WSL settings. The induced reduction graphs offer comprehensive connections over WSLs. The analysis component of the framework, viewed as a decontamination process, provides a systematic method of conducting risk rewrite. In addition to the conventional inverse matrix approach, we devise a novel strategy called marginal chain aiming to decontaminate distributions. We justify the feasibility of the proposed framework by recovering existing rewrites reported in the literature.
Abstract:Thompson sampling (TS) for the parametric stochastic multi-armed bandits has been well studied under the one-dimensional parametric models. It is often reported that TS is fairly insensitive to the choice of the prior when it comes to regret bounds. However, this property is not necessarily true when multiparameter models are considered, e.g., a Gaussian model with unknown mean and variance parameters. In this paper, we first extend the regret analysis of TS to the model of uniform distributions with unknown supports. Specifically, we show that a switch of noninformative priors drastically affects the regret in expectation. Through our analysis, the uniform prior is proven to be the optimal choice in terms of the expected regret, while the reference prior and the Jeffreys prior are found to be suboptimal, which is consistent with previous findings in the model of Gaussian distributions. However, the uniform prior is specific to the parameterization of the distributions, meaning that if an agent considers different parameterizations of the same model, the agent with the uniform prior might not always achieve the optimal performance. In light of this limitation, we propose a slightly modified TS-based policy, called TS with Truncation (TS-T), which can achieve the asymptotic optimality for the Gaussian distributions and the uniform distributions by using the reference prior and the Jeffreys prior that are invariant under one-to-one reparameterizations. The pre-processig of the posterior distribution is the key to TS-T, where we add an adaptive truncation procedure on the parameter space of the posterior distributions. Simulation results support our analysis, where TS-T shows the best performance in a finite-time horizon compared to other known optimal policies, while TS with the invariant priors performs poorly.
Abstract:In the stochastic multi-armed bandit problem, a randomized probability matching policy called Thompson sampling (TS) has shown excellent performance in various reward models. In addition to the empirical performance, TS has been shown to achieve asymptotic problem-dependent lower bounds in several models. However, its optimality has been mainly addressed under light-tailed or one-parameter models that belong to exponential families. In this paper, we consider the optimality of TS for the Pareto model that has a heavy tail and is parameterized by two unknown parameters. Specifically, we discuss the optimality of TS with probability matching priors that include the Jeffreys prior and the reference priors. We first prove that TS with certain probability matching priors can achieve the optimal regret bound. Then, we show the suboptimality of TS with other priors, including the Jeffreys and the reference priors. Nevertheless, we find that TS with the Jeffreys and reference priors can achieve the asymptotic lower bound if one uses a truncation procedure. These results suggest carefully choosing noninformative priors to avoid suboptimality and show the effectiveness of truncation procedures in TS-based policies.
Abstract:We study a budgeted hyper-parameter tuning problem, where we optimize the tuning result under a hard resource constraint. We propose to solve it as a sequential decision making problem, such that we can use the partial training progress of configurations to dynamically allocate the remaining budget. Our algorithm combines a Bayesian belief model which estimates the future performance of configurations, with an action-value function which balances exploration-exploitation tradeoff, to optimize the final output. It automatically adapts the tuning behaviors to different constraints, which is useful in practice. Experiment results demonstrate superior performance over existing algorithms, including the-state-of-the-art one, on real-world tuning tasks across a range of different budgets.
Abstract:Federated learning poses new statistical and systems challenges in training machine learning models over distributed networks of devices. In this work, we show that multi-task learning is naturally suited to handle the statistical challenges of this setting, and propose a novel systems-aware optimization method, MOCHA, that is robust to practical systems issues. Our method and theory for the first time consider issues of high communication cost, stragglers, and fault tolerance for distributed multi-task learning. The resulting method achieves significant speedups compared to alternatives in the federated setting, as we demonstrate through simulations on real-world federated datasets.
Abstract:We present an algorithm that achieves almost optimal pseudo-regret bounds against adversarial and stochastic bandits. Against adversarial bandits the pseudo-regret is $O(K\sqrt{n \log n})$ and against stochastic bandits the pseudo-regret is $O(\sum_i (\log n)/\Delta_i)$. We also show that no algorithm with $O(\log n)$ pseudo-regret against stochastic bandits can achieve $\tilde{O}(\sqrt{n})$ expected regret against adaptive adversarial bandits. This complements previous results of Bubeck and Slivkins (2012) that show $\tilde{O}(\sqrt{n})$ expected adversarial regret with $O((\log n)^2)$ stochastic pseudo-regret.