Abstract:Deploying speaker verification on resource-constrained devices remains challenging due to the computational cost of high-capacity models; knowledge distillation (KD) offers a remedy. Classical KD entangles target confidence with non-target structure in a Kullback-Leibler term, limiting the transfer of relational information. Decoupled KD separates these signals into target and non-target terms, yet treats non-targets uniformly and remains vulnerable to the long tail of low-probability classes in large-class settings. We introduce Triage KD (TRKD), a distillation scheme that operationalizes assess-prioritize-focus. TRKD introduces a cumulative-probability cutoff $τ$ to assess per-example difficulty and partition the teacher posterior into three groups: the target class, a high-probability non-target confusion-set, and a background-set. To prioritize informative signals, TRKD distills the confusion-set conditional distribution and discards the background. Concurrently, it transfers a three-mass (target/confusion/background) that capture sample difficulty and inter-class confusion. Finally, TRKD focuses learning via a curriculum on $τ$: training begins with a larger $τ$ to convey broad non-target context, then $τ$ is progressively decreased to shrink the confusion-set, concentrating supervision on the most confusable classes. In extensive experiments on VoxCeleb1 with both homogeneous and heterogeneous teacher-student pairs, TRKD was consistently superior to recent KD variants and attained the lowest EER across all protocols.
Abstract:Short-utterance speaker verification remains challenging due to limited speaker-discriminative cues in short speech segments. While existing methods focus on enhancing speaker encoders, the embedding learning strategy still forces a single fixed-dimensional representation reused for utterances of any length, leaving capacity misaligned with the information available at different durations. We propose Duration-Aware Matryoshka Embedding (DAME), a model-agnostic framework that builds a nested hierarchy of sub-embeddings aligned to utterance durations: lower-dimensional representations capture compact speaker traits from short utterances, while higher dimensions encode richer details from longer speech. DAME supports both training from scratch and fine-tuning, and serves as a direct alternative to conventional large-margin fine-tuning, consistently improving performance across durations. On the VoxCeleb1-O/E/H and VOiCES evaluation sets, DAME consistently reduces the equal error rate on 1-s and other short-duration trials, while maintaining full-length performance with no additional inference cost. These gains generalize across various speaker encoder architectures under both general training and fine-tuning setups.




Abstract:For text enrollment-based open-vocabulary keyword spotting (KWS), acoustic and text embeddings are typically compared at either the phoneme or utterance level. To facilitate this, we optimize acoustic and text encoders using deep metric learning (DML), enabling direct comparison of multi-modal embeddings in a shared embedding space. However, the inherent heterogeneity between audio and text modalities presents a significant challenge. To address this, we propose Modality Adversarial Learning (MAL), which reduces the domain gap in heterogeneous modality representations. Specifically, we train a modality classifier adversarially to encourage both encoders to generate modality-invariant embeddings. Additionally, we apply DML to achieve phoneme-level alignment between audio and text, and conduct comprehensive comparisons across various DML objectives. Experiments on the Wall Street Journal (WSJ) and LibriPhrase datasets demonstrate the effectiveness of the proposed approach.




Abstract:In recent years, there has been an increasing focus on user convenience, leading to increased interest in text-based keyword enrollment systems for keyword spotting (KWS). Since the system utilizes text input during the enrollment phase and audio input during actual usage, we call this task audio-text based KWS. To enable this task, both acoustic and text encoders are typically trained using deep metric learning loss functions, such as triplet- and proxy-based losses. This study aims to improve existing methods by leveraging the structural relations within acoustic embeddings and within text embeddings. Unlike previous studies that only compare acoustic and text embeddings on a point-to-point basis, our approach focuses on the relational structures within the embedding space by introducing the concept of Relational Proxy Loss (RPL). By incorporating RPL, we demonstrated improved performance on the Wall Street Journal (WSJ) corpus.




Abstract:Capsule networks (CapsNets) have recently gotten attention as alternatives for convolutional neural networks (CNNs) with their greater hierarchical representation capabilities. In this paper, we introduce the sequential routing framework (SRF) which we believe is the first method to adapt a CapsNet-only structure to sequence-to-sequence recognition. In SRF, input sequences are capsulized then sliced by the window size. Each sliced window is classified to a label at the corresponding time through iterative routing mechanisms. Afterwards, training losses are computed using connectionist temporal classification (CTC). During routing, two kinds of information, learnable weights and iteration outputs are shared across the slices. By sharing the information, the required parameter numbers can be controlled by the given window size regardless of the length of sequences. Moreover, the method can minimize decoding speed degradation caused by the routing iterations since it can operate in a non-iterative manner at inference time without dropping accuracy. We empirically proved the validity of our method by performing phoneme sequence recognition tasks on the TIMIT corpus. The proposed method attains an 82.6% phoneme recognition rate. It is 0.8% more accurate than that of CNN-based CTC networks and on par with that of recurrent neural network transducers (RNN-Ts). Even more, the method requires less than half the parameters compared to the two architectures.