Abstract:Integrated sensing and communication (ISAC) emerges as a cornerstone technology for the upcoming 6G era, seamlessly incorporating sensing functionality into wireless networks as an inherent capability. This paper undertakes a holistic investigation of two fundamental trade-offs in monostatic OFDM ISAC systems-namely, the time-frequency domain trade-off and the spatial domain trade-off. To ensure robust sensing across diverse modulation orders in the time-frequency domain, including high-order QAM, we design a linear minimum mean-squared-error (LMMSE) estimator tailored for sensing with known, randomly generated signals of varying amplitude. Moreover, we explore spatial domain trade-offs through two ISAC transmission strategies: concurrent, employing joint beams, and time-sharing, using separate, time-non-overlapping beams for sensing and communications. Simulations demonstrate superior performance of the LMMSE estimator in detecting weak targets in the presence of strong ones under high-order QAM, consistently yielding more favorable ISAC trade-offs than existing baselines. Key insights into these trade-offs under various modulation schemes, SNR conditions, target radar cross section (RCS) levels and transmission strategies highlight the merits of the proposed LMMSE approach.
Abstract:Orthogonal time frequency space (OTFS) is a promising alternative to orthogonal frequency division multiplexing (OFDM) for high-mobility communications. We propose a novel multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system based on OTFS modulation. We begin by deriving new sensing and communication signal models for the proposed MIMO-OTFS ISAC system that explicitly capture inter-symbol interference (ISI) and inter-carrier interference (ICI) effects. We then develop a generalized likelihood ratio test (GLRT) based multi-target detection and delay-Doppler-angle estimation algorithm for MIMO-OTFS radar sensing that can simultaneously mitigate and exploit ISI/ICI effects, to prevent target masking and surpass standard unambiguous detection limits in range/velocity. Moreover, considering two operational modes (search/track), we propose an adaptive MIMO-OTFS ISAC transmission strategy. For the search mode, we introduce the concept of delay-Doppler (DD) multiplexing, enabling omnidirectional probing of the environment and large virtual array at the OTFS radar receiver. For the track mode, we pursue a directional transmission approach and design an OTFS ISAC optimization algorithm in spatial and DD domains, seeking the optimal trade-off between radar signal-to-noise ratio (SNR) and achievable rate. Simulation results verify the effectiveness of the proposed sensing algorithm and reveal valuable insights into OTFS ISAC trade-offs under varying communication channel characteristics.
Abstract:The VEDLIoT project aims to develop energy-efficient Deep Learning methodologies for distributed Artificial Intelligence of Things (AIoT) applications. During our project, we propose a holistic approach that focuses on optimizing algorithms while addressing safety and security challenges inherent to AIoT systems. The foundation of this approach lies in a modular and scalable cognitive IoT hardware platform, which leverages microserver technology to enable users to configure the hardware to meet the requirements of a diverse array of applications. Heterogeneous computing is used to boost performance and energy efficiency. In addition, the full spectrum of hardware accelerators is integrated, providing specialized ASICs as well as FPGAs for reconfigurable computing. The project's contributions span across trusted computing, remote attestation, and secure execution environments, with the ultimate goal of facilitating the design and deployment of robust and efficient AIoT systems. The overall architecture is validated on use-cases ranging from Smart Home to Automotive and Industrial IoT appliances. Ten additional use cases are integrated via an open call, broadening the range of application areas.
Abstract:Phase noise (PN) can become a major bottleneck for integrated sensing and communications (ISAC) systems towards 6G wireless networks. In this paper, we consider an OFDM ISAC system with oscillator imperfections and investigate the impact of PN on monostatic sensing performance by performing a misspecified Cram\'er-Rao bound (MCRB) analysis. Simulations are carried out under a wide variety of operating conditions with regard to SNR, oscillator type (free-running oscillators (FROs) and phase-locked loops (PLLs)), 3-dB bandwidth of the oscillator spectrum, PLL loop bandwidth and target range. The results provide valuable insights on when PN leads to a significant degradation in range and/or velocity accuracy, establishing important guidelines for hardware and algorithm design in 6G ISAC systems.