Distributed multi-antenna systems are an important enabling technology for future intelligent transportation systems (ITS), showing promising performance in vehicular communications and near-field (NF) localization applications. This work investigates optimal deployments of phase-coherent sub-arrays on a vehicle for NF localization in terms of a Cram\'er-Rao lower bound (CRLB)-based metric. Sub-array placements consider practical geometrical constraints on a three-dimensional vehicle model accounting for self-occlusions. Results show that, for coherent NF localization of the vehicle, the aperture spanned by the sub-arrays should be maximized and a larger number of sub-arrays results in more even coverage over the vehicle orientations under a fixed total number of antenna elements, contrasting with the outcomes of incoherent localization. Moreover, while coherent NF processing significantly enhances accuracy, it also leads to more intricate cost functions, necessitating computationally more complex algorithms than incoherent processing.