Abstract:We present a novel Automatic Target Recognition (ATR) system using open-vocabulary object detection and classification models. A primary advantage of this approach is that target classes can be defined just before runtime by a non-technical end user, using either a few natural language text descriptions of the target, or a few image exemplars, or both. Nuances in the desired targets can be expressed in natural language, which is useful for unique targets with little or no training data. We also implemented a novel combination of several techniques to improve performance, such as leveraging the additional information in the sequence of overlapping frames to perform tubelet identification (i.e., sequential bounding box matching), bounding box re-scoring, and tubelet linking. Additionally, we developed a technique to visualize the aggregate output of many overlapping frames as a mosaic of the area scanned during the aerial surveillance or reconnaissance, and a kernel density estimate (or heatmap) of the detected targets. We initially applied this ATR system to the use case of detecting and clearing unexploded ordinance on airfield runways and we are currently extending our research to other real-world applications.
Abstract:The analysis of students' emotions and behaviors is crucial for enhancing learning outcomes and personalizing educational experiences. Traditional methods often rely on intrusive visual and physiological data collection, posing privacy concerns and scalability issues. This paper proposes a novel method leveraging large language models (LLMs) and prompt engineering to analyze textual data from students. Our approach utilizes tailored prompts to guide LLMs in detecting emotional and engagement states, providing a non-intrusive and scalable solution. We conducted experiments using Qwen, ChatGPT, Claude2, and GPT-4, comparing our method against baseline models and chain-of-thought (CoT) prompting. Results demonstrate that our method significantly outperforms the baselines in both accuracy and contextual understanding. This study highlights the potential of LLMs combined with prompt engineering to offer practical and effective tools for educational emotion and behavior analysis.
Abstract:We present FOLIO, a human-annotated, open-domain, and logically complex and diverse dataset for reasoning in natural language (NL), equipped with first order logic (FOL) annotations. FOLIO consists of 1,435 examples (unique conclusions), each paired with one of 487 sets of premises which serve as rules to be used to deductively reason for the validity of each conclusion. The logical correctness of premises and conclusions is ensured by their parallel FOL annotations, which are automatically verified by our FOL inference engine. In addition to the main NL reasoning task, NL-FOL pairs in FOLIO automatically constitute a new NL-FOL translation dataset using FOL as the logical form. Our experiments on FOLIO systematically evaluate the FOL reasoning ability of supervised fine-tuning on medium-sized language models (BERT, RoBERTa) and few-shot prompting on large language models (GPT-NeoX, OPT, GPT-3, Codex). For NL-FOL translation, we experiment with GPT-3 and Codex. Our results show that one of the most capable Large Language Model (LLM) publicly available, GPT-3 davinci, achieves only slightly better than random results with few-shot prompting on a subset of FOLIO, and the model is especially bad at predicting the correct truth values for False and Unknown conclusions. Our dataset and code are available at https://github.com/Yale-LILY/FOLIO.