Abstract:Software developers balance a variety of different tasks in a workweek, yet the allocation of time often differs from what they consider ideal. Identifying and addressing these deviations is crucial for organizations aiming to enhance the productivity and well-being of the developers. In this paper, we present the findings from a survey of 484 software developers at Microsoft, which aims to identify the key differences between how developers would like to allocate their time during an ideal workweek versus their actual workweek. Our analysis reveals significant deviations between a developer's ideal workweek and their actual workweek, with a clear correlation: as the gap between these two workweeks widens, we observe a decline in both productivity and satisfaction. By examining these deviations in specific activities, we assess their direct impact on the developers' satisfaction and productivity. Additionally, given the growing adoption of AI tools in software engineering, both in the industry and academia, we identify specific tasks and areas that could be strong candidates for automation. In this paper, we make three key contributions: 1) We quantify the impact of workweek deviations on developer productivity and satisfaction 2) We identify individual tasks that disproportionately affect satisfaction and productivity 3) We provide actual data-driven insights to guide future AI automation efforts in software engineering, aligning them with the developers' requirements and ideal workflows for maximizing their productivity and satisfaction.
Abstract:We present a comprehensive, user-centric approach to understand preferences in AI-based productivity agents and develop personalized solutions tailored to users' needs. Utilizing a two-phase method, we first conducted a survey with 363 participants, exploring various aspects of productivity, communication style, agent approach, personality traits, personalization, and privacy. Drawing on the survey insights, we developed a GPT-4 powered personalized productivity agent that utilizes telemetry data gathered via Viva Insights from information workers to provide tailored assistance. We compared its performance with alternative productivity-assistive tools, such as dashboard and narrative, in a study involving 40 participants. Our findings highlight the importance of user-centric design, adaptability, and the balance between personalization and privacy in AI-assisted productivity tools. By building on the insights distilled from our study, we believe that our work can enable and guide future research to further enhance productivity solutions, ultimately leading to optimized efficiency and user experiences for information workers.