Abstract:Adaptive optimizers are pivotal in guiding the weight updates of deep neural networks, yet they often face challenges such as poor generalization and oscillation issues. To counter these, we introduce sigSignGrad and tanhSignGrad, two novel optimizers that integrate adaptive friction coefficients based on the Sigmoid and Tanh functions, respectively. These algorithms leverage short-term gradient information, a feature overlooked in traditional Adam variants like diffGrad and AngularGrad, to enhance parameter updates and convergence.Our theoretical analysis demonstrates the wide-ranging adjustment capability of the friction coefficient S, which aligns with targeted parameter update strategies and outperforms existing methods in both optimization trajectory smoothness and convergence rate. Extensive experiments on CIFAR-10, CIFAR-100, and Mini-ImageNet datasets using ResNet50 and ViT architectures confirm the superior performance of our proposed optimizers, showcasing improved accuracy and reduced training time. The innovative approach of integrating adaptive friction coefficients as plug-ins into existing optimizers, exemplified by the sigSignAdamW and sigSignAdamP variants, presents a promising strategy for boosting the optimization performance of established algorithms. The findings of this study contribute to the advancement of optimizer design in deep learning.
Abstract:Traditional single-factor authentication possesses several critical security vulnerabilities due to single-point failure feature. Multi-factor authentication (MFA), intends to enhance security by providing additional verification steps. However, in practical deployment, users often experience dissatisfaction while using MFA, which leads to non-adoption. In order to understand the current design and usability issues with MFA, we analyze aggregated user generated comments (N = 12,500) about application-based MFA tools from major distributors, such as, Amazon, Google Play, Apple App Store, and others. While some users acknowledge the security benefits of MFA, majority of them still faced problems with initial configuration, system design understanding, limited device compatibility, and risk trade-offs leading to non-adoption of MFA. Based on these results, we provide actionable recommendations in technological design, initial training, and risk communication to improve the adoption and user experience of MFA.