Abstract:Top-$K$ recommendation involves inferring latent user preferences and generating personalized recommendations accordingly, which is now ubiquitous in various decision systems. Nonetheless, recommender systems usually suffer from severe \textit{popularity bias}, leading to the over-recommendation of popular items. Such a bias deviates from the central aim of reflecting user preference faithfully, compromising both customer satisfaction and retailer profits. Despite the prevalence, existing methods tackling popularity bias still have limitations due to the considerable accuracy-debias tradeoff and the sensitivity to extensive parameter selection, further exacerbated by the extreme sparsity in positive user-item interactions. In this paper, we present a \textbf{Pop}ularity-aware top-$K$ recommendation algorithm integrating multi-behavior \textbf{S}ide \textbf{I}nformation (PopSI), aiming to enhance recommendation accuracy and debias performance simultaneously. Specifically, by leveraging multiple user feedback that mirrors similar user preferences and formulating it as a three-dimensional tensor, PopSI can utilize all slices to capture the desiring user preferences effectively. Subsequently, we introduced a novel orthogonality constraint to refine the estimated item feature space, enforcing it to be invariant to item popularity features thereby addressing our model's sensitivity to popularity bias. Comprehensive experiments on real-world e-commerce datasets demonstrate the general improvements of PopSI over state-of-the-art debias methods with a marginal accuracy-debias tradeoff and scalability to practical applications. The source code for our algorithm and experiments is available at \url{https://github.com/Eason-sys/PopSI}.
Abstract:Interstitial diffusion is a pivotal process that governs the phase stability and irradiation response of materials in non-equilibrium conditions. In this work, we study sluggish and chemically-biased interstitial diffusion in Fe-Ni concentrated solid solution alloys (CSAs) by combining machine learning (ML) and kinetic Monte Carlo (kMC), where ML is used to accurately and efficiently predict the migration energy barriers on-the-fly. The ML-kMC reproduces the diffusivity that was reported by molecular dynamics results at high temperatures. With this powerful tool, we find that the observed sluggish diffusion and the "Ni-Ni-Ni"-biased diffusion in Fe-Ni alloys are ascribed to a unique "Barrier Lock" mechanism, whereas the "Fe-Fe-Fe"-biased diffusion is influenced by a "Component Dominance" mechanism. Inspired by the mentioned mechanisms, a practical AvgS-kMC method is proposed for conveniently and swiftly determining interstitial-mediated diffusivity by only relying on the mean energy barriers of migration patterns. Combining the AvgS-kMC with the differential evolutionary algorithm, an inverse design strategy for optimizing sluggish diffusion properties is applied to emphasize the crucial role of favorable migration patterns.
Abstract:Fraud detection is to identify, monitor, and prevent potentially fraudulent activities from complex data. The recent development and success in AI, especially machine learning, provides a new data-driven way to deal with fraud. From a methodological point of view, machine learning based fraud detection can be divided into two categories, i.e., conventional methods (decision tree, boosting...) and deep learning, both of which have significant limitations in terms of the lack of representation learning ability for the former and interpretability for the latter. Furthermore, due to the rarity of detected fraud cases, the associated data is usually imbalanced, which seriously degrades the performance of classification algorithms. In this paper, we propose deep boosting decision trees (DBDT), a novel approach for fraud detection based on gradient boosting and neural networks. In order to combine the advantages of both conventional methods and deep learning, we first construct soft decision tree (SDT), a decision tree structured model with neural networks as its nodes, and then ensemble SDTs using the idea of gradient boosting. In this way we embed neural networks into gradient boosting to improve its representation learning capability and meanwhile maintain the interpretability. Furthermore, aiming at the rarity of detected fraud cases, in the model training phase we propose a compositional AUC maximization approach to deal with data imbalances at algorithm level. Extensive experiments on several real-life fraud detection datasets show that DBDT can significantly improve the performance and meanwhile maintain good interpretability. Our code is available at https://github.com/freshmanXB/DBDT.
Abstract:Connected and automated vehicles have shown great potential in improving traffic mobility and reducing emissions, especially at unsignalized intersections. Previous research has shown that vehicle passing order is the key influencing factor in improving intersection traffic mobility. In this paper, we propose a graph-based cooperation method to formalize the conflict-free scheduling problem at an unsignalized intersection. Based on graphical analysis, a vehicle's trajectory conflict relationship is modeled as a conflict directed graph and a coexisting undirected graph. Then, two graph-based methods are proposed to find the vehicle passing order. The first is an improved depth-first spanning tree algorithm, which aims to find the local optimal passing order vehicle by vehicle. The other novel method is a minimum clique cover algorithm, which identifies the global optimal solution. Finally, a distributed control framework and communication topology are presented to realize the conflict-free cooperation of vehicles. Extensive numerical simulations are conducted for various numbers of vehicles and traffic volumes, and the simulation results prove the effectiveness of the proposed algorithms.