Intelligent Embedded Systems
Abstract:Autonomous systems, like vehicles or robots, require reliable, accurate, fast, resource-efficient, scalable, and low-latency trajectory predictions to get initial knowledge about future locations and movements of surrounding objects for safe human-machine interaction. Furthermore, they need to know the uncertainty of the predictions for risk assessment to provide safe path planning. This paper presents a lightweight method to address these requirements, combining Long Short-Term Memory and Mixture Density Networks. Our method predicts probability distributions, including confidence level estimations for positional uncertainty to support subsequent risk management applications and runs on a low-power embedded platform. We discuss essential requirements for human trajectory prediction in autonomous vehicle applications and demonstrate our method's performance using multiple traffic-related datasets. Furthermore, we explain reliability and sharpness metrics and show how important they are to guarantee the correctness and robustness of a model's predictions and uncertainty assessments. These essential evaluations have so far received little attention for no good reason. Our approach focuses entirely on real-world applicability. Verifying prediction uncertainties and a model's reliability are central to autonomous real-world applications. Our framework and code are available at: https://github.com/kav-institute/mdn_trajectory_forecasting.
Abstract:Electrification of vehicles is a potential way of reducing fossil fuel usage and thus lessening environmental pollution. Electric Vehicles (EVs) of various types for different transport modes (including air, water, and land) are evolving. Moreover, different EV user groups (commuters, commercial or domestic users, drivers) may use different charging infrastructures (public, private, home, and workplace) at various times. Therefore, usage patterns and energy demand are very stochastic. Characterizing and forecasting the charging demand of these diverse EV usage profiles is essential in preventing power outages. Previously developed data-driven load models are limited to specific use cases and locations. None of these models are simultaneously adaptive enough to transfer knowledge of day-ahead forecasting among EV charging sites of diverse locations, trained with limited data, and cost-effective. This article presents a location-based load forecasting of EV charging sites using a deep Multi-Quantile Temporal Convolutional Network (MQ-TCN) to overcome the limitations of earlier models. We conducted our experiments on data from four charging sites, namely Caltech, JPL, Office-1, and NREL, which have diverse EV user types like students, full-time and part-time employees, random visitors, etc. With a Prediction Interval Coverage Probability (PICP) score of 93.62\%, our proposed deep MQ-TCN model exhibited a remarkable 28.93\% improvement over the XGBoost model for a day-ahead load forecasting at the JPL charging site. By transferring knowledge with the inductive Transfer Learning (TL) approach, the MQ-TCN model achieved a 96.88\% PICP score for the load forecasting task at the NREL site using only two weeks of data.
Abstract:Human annotators typically provide annotated data for training machine learning models, such as neural networks. Yet, human annotations are subject to noise, impairing generalization performances. Methodological research on approaches counteracting noisy annotations requires corresponding datasets for a meaningful empirical evaluation. Consequently, we introduce a novel benchmark dataset, dopanim, consisting of about 15,750 animal images of 15 classes with ground truth labels. For approximately 10,500 of these images, 20 humans provided over 52,000 annotations with an accuracy of circa 67%. Its key attributes include (1) the challenging task of classifying doppelganger animals, (2) human-estimated likelihoods as annotations, and (3) annotator metadata. We benchmark well-known multi-annotator learning approaches using seven variants of this dataset and outline further evaluation use cases such as learning beyond hard class labels and active learning. Our dataset and a comprehensive codebase are publicly available to emulate the data collection process and to reproduce all empirical results.
Abstract:The challenges posed by renewable energy and distributed electricity generation motivate the development of deep learning approaches to overcome the lack of flexibility of traditional methods in power grids use cases. The application of GNNs is particularly promising due to their ability to learn from graph-structured data present in power grids. Combined with RL, they can serve as control approaches to determine remedial grid actions. This review analyses the ability of GRL to capture the inherent graph structure of power grids to improve representation learning and decision making in different power grid use cases. It distinguishes between common problems in transmission and distribution grids and explores the synergy between RL and GNNs. In transmission grids, GRL typically addresses automated grid management and topology control, whereas on the distribution side, GRL concentrates more on voltage regulation. We analyzed the selected papers based on their graph structure and GNN model, the applied RL algorithm, and their overall contributions. Although GRL demonstrate adaptability in the face of unpredictable events and noisy or incomplete data, it primarily serves as a proof of concept at this stage. There are multiple open challenges and limitations that need to be addressed when considering the application of RL to real power grid operation.
Abstract:Passive acoustic monitoring (PAM) in avian bioacoustics enables cost-effective and extensive data collection with minimal disruption to natural habitats. Despite advancements in computational avian bioacoustics, deep learning models continue to encounter challenges in adapting to diverse environments in practical PAM scenarios. This is primarily due to the scarcity of annotations, which requires labor-intensive efforts from human experts. Active learning (AL) reduces annotation cost and speed ups adaption to diverse scenarios by querying the most informative instances for labeling. This paper outlines a deep AL approach, introduces key challenges, and conducts a small-scale pilot study.
Abstract:This article investigates the application of computer vision and graph-based models in solving mesh-based partial differential equations within high-performance computing environments. Focusing on structured, graded structured, and unstructured meshes, the study compares the performance and computational efficiency of three computer vision-based models against three graph-based models across three data\-sets. The research aims to identify the most suitable models for different mesh topographies, particularly highlighting the exploration of graded meshes, a less studied area. Results demonstrate that computer vision-based models, notably U-Net, outperform the graph models in prediction performance and efficiency in two (structured and graded) out of three mesh topographies. The study also reveals the unexpected effectiveness of computer vision-based models in handling unstructured meshes, suggesting a potential shift in methodological approaches for data-driven partial differential equation learning. The article underscores deep learning as a viable and potentially sustainable way to enhance traditional high-performance computing methods, advocating for informed model selection based on the topography of the mesh.
Abstract:This article presents the Sorting Composite Quantile Regression Neural Network (SCQRNN), an advanced quantile regression model designed to prevent quantile crossing and enhance computational efficiency. Integrating ad hoc sorting in training, the SCQRNN ensures non-intersecting quantiles, boosting model reliability and interpretability. We demonstrate that the SCQRNN not only prevents quantile crossing and reduces computational complexity but also achieves faster convergence than traditional models. This advancement meets the requirements of high-performance computing for sustainable, accurate computation. In organic computing, the SCQRNN enhances self-aware systems with predictive uncertainties, enriching applications across finance, meteorology, climate science, and engineering.
Abstract:Training with noisy class labels impairs neural networks' generalization performance. In this context, mixup is a popular regularization technique to improve training robustness by making memorizing false class labels more difficult. However, mixup neglects that, typically, multiple annotators, e.g., crowdworkers, provide class labels. Therefore, we propose an extension of mixup, which handles multiple class labels per instance while considering which class label originates from which annotator. Integrated into our multi-annotator classification framework annot-mix, it performs superiorly to eight state-of-the-art approaches on eleven datasets with noisy class labels provided either by human or simulated annotators. Our code is publicly available through our repository at https://github.com/ies-research/annot-mix.
Abstract:The operating environment of a highly automated vehicle is subject to change, e.g., weather, illumination, or the scenario containing different objects and other participants in which the highly automated vehicle has to navigate its passengers safely. These situations must be considered when developing and validating highly automated driving functions. This already poses a problem for training and evaluating deep learning models because without the costly labeling of thousands of recordings, not knowing whether the data contains relevant, interesting data for further model training, it is a guess under which conditions and situations the model performs poorly. For this purpose, we present corner case criteria based on the predictive uncertainty. With our corner case criteria, we are able to detect uncertainty-based corner cases of an object instance segmentation model without relying on ground truth (GT) data. We evaluated each corner case criterion using the COCO and the NuImages dataset to analyze the potential of our approach. We also provide a corner case decision function that allows us to distinguish each object into True Positive (TP), localization and/or classification corner case, or False Positive (FP). We also present our first results of an iterative training cycle that outperforms the baseline and where the data added to the training dataset is selected based on the corner case decision function.
Abstract:Recently, scientists have proposed several deep learning models to monitor the diversity of bird species. These models can detect bird species with high accuracy by analyzing acoustic signals. However, traditional deep learning algorithms are black-box models that provide no insight into their decision-making process. For domain experts, such as ornithologists, it is crucial that these models are not only efficient, but also interpretable in order to be used as assistive tools. In this study, we present an adaption of the Prototypical Part Network (ProtoPNet) for audio classification that provides inherent interpretability through its model architecture. Our approach is based on a ConvNeXt backbone architecture for feature extraction and learns prototypical patterns for each bird species using spectrograms of the training data. Classification of new data is done by comparison with these prototypes in latent space, which simultaneously serve as easily understandable explanations for the model's decisions.