Abstract:This study is the first to explore whether multi-modal large language models (LLMs) can align their behaviors with visual personas, addressing a significant gap in the literature that predominantly focuses on text-based personas. We developed a novel dataset of 5K fictional avatar images for assignment as visual personas to LLMs, and analyzed their negotiation behaviors based on the visual traits depicted in these images, with a particular focus on aggressiveness. The results indicate that LLMs assess the aggressiveness of images in a manner similar to humans and output more aggressive negotiation behaviors when prompted with an aggressive visual persona. Interestingly, the LLM exhibited more aggressive negotiation behaviors when the opponent's image appeared less aggressive than their own, and less aggressive behaviors when the opponents image appeared more aggressive.
Abstract:Large language models exhibit societal biases associated with demographic information, including race, gender, and others. Endowing such language models with personalities based on demographic data can enable generating opinions that align with those of humans. Building on this idea, we propose "random silicon sampling," a method to emulate the opinions of the human population sub-group. Our study analyzed 1) a language model that generates the survey responses that correspond with a human group based solely on its demographic distribution and 2) the applicability of our methodology across various demographic subgroups and thematic questions. Through random silicon sampling and using only group-level demographic information, we discovered that language models can generate response distributions that are remarkably similar to the actual U.S. public opinion polls. Moreover, we found that the replicability of language models varies depending on the demographic group and topic of the question, and this can be attributed to inherent societal biases in the models. Our findings demonstrate the feasibility of mirroring a group's opinion using only demographic distribution and elucidate the effect of social biases in language models on such simulations.
Abstract:Purpose: We model group advertising decisions, which are the collective decisions of every single advertiser within the set of advertisers who are competing in the same auction or vertical industry, and examine resulting market outcomes, via a proposed simulation framework named EXP-SEA (Experimental Platform for Search Engine Advertising) supporting experimental studies of collective behaviors in the context of search engine advertising. Design: We implement the EXP-SEA to validate the proposed simulation framework, also conduct three experimental studies on the aggregate impact of electronic word-of-mouth, the competition level, and strategic bidding behaviors. EXP-SEA supports heterogeneous participants, various auction mechanisms, and also ranking and pricing algorithms. Findings: Findings from our three experiments show that (a) both the market profit and advertising indexes such as number of impressions and number of clicks are larger when the eWOM effect presents, meaning social media certainly has some effect on search engine advertising outcomes, (b) the competition level has a monotonic increasing effect on the market performance, thus search engines have an incentive to encourage both the eWOM among search users and competition among advertisers, and (c) given the market-level effect of the percentage of advertisers employing a dynamic greedy bidding strategy, there is a cut-off point for strategic bidding behaviors. Originality: This is one of the first research works to explore collective group decisions and resulting phenomena in the complex context of search engine advertising via developing and validating a simulation framework that supports assessments of various advertising strategies and estimations of the impact of mechanisms on the search market.
Abstract:In sponsored search advertising, keywords serve as an essential bridge linking advertisers, search users and search engines. Advertisers have to deal with a series of keyword decisions throughout the entire lifecycle of search advertising campaigns. This paper proposes a multi-level and closed-form computational framework for keyword optimization (MKOF) to support various keyword decisions. Based on this framework, we develop corresponding optimization strategies for keyword targeting, keyword assignment and keyword grouping at different levels (e.g., market, campaign and adgroup). With two real-world datasets obtained from past search advertising campaigns, we conduct computational experiments to evaluate our keyword optimization framework and instantiated strategies. Experimental results show that our method can approach the optimal solution in a steady way, and it outperforms two baseline keyword strategies commonly used in practice. The proposed MKOF framework also provides a valid experimental environment to implement and assess various keyword strategies in sponsored search advertising.