Abstract:Neural audio codecs provide promising acoustic features for speech synthesis, with representative streaming codecs like Mimi providing high-quality acoustic features for real-time Text-to-Speech (TTS) applications. However, Mimi's decoder, which employs a hybrid transformer and convolution architecture, introduces significant latency bottlenecks on edge devices due to the the compute intensive nature of deconvolution layers which are not friendly for mobile-CPUs, such as the most representative framework XNNPACK. This paper introduces T-Mimi, a novel modification of the Mimi codec decoder that replaces its convolutional components with a purely transformer-based decoder, inspired by the TS3-Codec architecture. This change dramatically reduces on-device TTS latency from 42.1ms to just 4.4ms. Furthermore, we conduct quantization aware training and derive a crucial finding: the final two transformer layers and the concluding linear layers of the decoder, which are close to the waveform, are highly sensitive to quantization and must be preserved at full precision to maintain audio quality.
Abstract:Operational disruptions can significantly impact companies performance. Ford, with its 37 plants globally, uses 17 billion parts annually to manufacture six million cars and trucks. With up to ten tiers of suppliers between the company and raw materials, any extended disruption in this supply chain can cause substantial financial losses. Therefore, the ability to forecast and identify such disruptions early is crucial for maintaining seamless operations. In this study, we demonstrate how we construct a dataset consisting of many multivariate time series to forecast first-tier supply chain disruptions, utilizing features related to capacity, inventory, utilization, and processing, as outlined in the classical Factory Physics framework. This dataset is technically challenging due to its vast scale of over five hundred thousand time series. Furthermore, these time series, while exhibiting certain similarities, also display heterogeneity within specific subgroups. To address these challenges, we propose a novel methodology that integrates an enhanced Attention Sequence to Sequence Deep Learning architecture, using Neural Network Embeddings to model group effects, with a Survival Analysis model. This model is designed to learn intricate heterogeneous data patterns related to operational disruptions. Our model has demonstrated a strong performance, achieving 0.85 precision and 0.8 recall during the Quality Assurance (QA) phase across Ford's five North American plants. Additionally, to address the common criticism of Machine Learning models as black boxes, we show how the SHAP framework can be used to generate feature importance from the model predictions. It offers valuable insights that can lead to actionable strategies and highlights the potential of advanced machine learning for managing and mitigating supply chain risks in the automotive industry.