Abstract:Susceptibility to misinformation describes the extent to believe unverifiable claims, which is hidden in people's mental process and infeasible to observe. Existing susceptibility studies heavily rely on the self-reported beliefs, making any downstream applications on susceptability hard to scale. To address these limitations, in this work, we propose a computational model to infer users' susceptibility levels given their activities. Since user's susceptibility is a key indicator for their reposting behavior, we utilize the supervision from the observable sharing behavior to infer the underlying susceptibility tendency. The evaluation shows that our model yields estimations that are highly aligned with human judgment on users' susceptibility level comparisons. Building upon such large-scale susceptibility labeling, we further conduct a comprehensive analysis of how different social factors relate to susceptibility. We find that political leanings and psychological factors are associated with susceptibility in varying degrees.
Abstract:We present MIDDAG, an intuitive, interactive system that visualizes the information propagation paths on social media triggered by COVID-19-related news articles accompanied by comprehensive insights including user/community susceptibility level, as well as events and popular opinions raised by the crowd while propagating the information. Besides discovering information flow patterns among users, we construct communities among users and develop the propagation forecasting capability, enabling tracing and understanding of how information is disseminated at a higher level.