Abstract:Ensuring safety is of paramount importance in physical human-robot interaction applications. This requires both an adherence to safety constraints defined on the system state, as well as guaranteeing compliant behaviour of the robot. If the underlying dynamical system is known exactly, the former can be addressed with the help of control barrier functions. Incorporation of elastic actuators in the robot's mechanical design can address the latter requirement. However, this elasticity can increase the complexity of the resulting system, leading to unmodeled dynamics, such that control barrier functions cannot directly ensure safety. In this paper, we mitigate this issue by learning the unknown dynamics using Gaussian process regression. By employing the model in a feedback linearizing control law, the safety conditions resulting from control barrier functions can be robustified to take into account model errors, while remaining feasible. In order enforce them on-line, we formulate the derived safety conditions in the form of a second-order cone program. We demonstrate our proposed approach with simulations on a two-degree of freedom planar robot with elastic joints.